{"title":"Low-power resistive switching in a two-terminal VO2 mesostructures","authors":"K.E. Kapoguzov , D.M. Milyushin , V.S. Tumashev , E.K. Bagochus , V.N. Kichay , L.V. Yakovkina , S.V. Mutilin","doi":"10.1016/j.physb.2025.417765","DOIUrl":null,"url":null,"abstract":"<div><div>Vanadium dioxide (VO<sub>2</sub>) is a promising material for high-speed, energy-efficient nanoelectronic and nanophotonic devices due to its semiconductor–metal phase transition. In this study, we investigated resistive switching in a VO<sub>2</sub> mesostructures with varying contact widths. We showed that mesostructure formation significantly reduces the current flow area, heat dissipation and enhances the switching ratio compared to a solid film. At a contact width of 3 μm, the current jumped by ∼400 times, an order of magnitude greater than in the solid-film device, while the threshold switching power was ∼0.78 mW, also an order of magnitude lower. Moreover, reducing contact width in solid films caused current spreading over an area 2–10 times wider than the contact width, leading to unwanted thermal crosstalk in potential dense neuromorphic systems. We proposed mesostructure with contact widths less than 10 μm as an efficient approach to improving switching localization.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"716 ","pages":"Article 417765"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625008828","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Vanadium dioxide (VO2) is a promising material for high-speed, energy-efficient nanoelectronic and nanophotonic devices due to its semiconductor–metal phase transition. In this study, we investigated resistive switching in a VO2 mesostructures with varying contact widths. We showed that mesostructure formation significantly reduces the current flow area, heat dissipation and enhances the switching ratio compared to a solid film. At a contact width of 3 μm, the current jumped by ∼400 times, an order of magnitude greater than in the solid-film device, while the threshold switching power was ∼0.78 mW, also an order of magnitude lower. Moreover, reducing contact width in solid films caused current spreading over an area 2–10 times wider than the contact width, leading to unwanted thermal crosstalk in potential dense neuromorphic systems. We proposed mesostructure with contact widths less than 10 μm as an efficient approach to improving switching localization.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces