Ziling Ma, Ángel López-Oriona, Hernando Ombao, Ying Sun
{"title":"FCPCA: Fuzzy clustering of high-dimensional time series based on common principal component analysis","authors":"Ziling Ma, Ángel López-Oriona, Hernando Ombao, Ying Sun","doi":"10.1016/j.ijar.2025.109552","DOIUrl":null,"url":null,"abstract":"<div><div>Clustering multivariate time series data is a crucial task in many domains, as it enables the identification of meaningful patterns and groups in time-evolving data. Traditional approaches, such as crisp clustering, rely on the assumption that clusters are sufficiently separated with little overlap. However, real-world data often defy this assumption, showing overlapping distributions or overlapping clouds of points and blurred boundaries between clusters. Fuzzy clustering offers a compelling alternative by allowing partial membership in multiple clusters, making it well-suited for these ambiguous scenarios. Despite its advantages, current fuzzy clustering methods primarily focus on univariate time series, and for multivariate cases, even datasets of moderate dimensionality become computationally prohibitive. This challenge is further exacerbated when dealing with time series of varying lengths, leaving a clear gap in addressing the complexities of modern datasets. This work introduces a novel fuzzy clustering approach based on common principal component analysis to address the aforementioned shortcomings. Our method has the advantage of efficiently handling high-dimensional multivariate time series by reducing dimensionality while preserving critical temporal features. Extensive numerical results show that our proposed clustering method outperforms several existing approaches in the literature. An interesting application involving brain signals from different drivers recorded from a simulated driving experiment illustrates the potential of the approach.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"187 ","pages":"Article 109552"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001938","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Clustering multivariate time series data is a crucial task in many domains, as it enables the identification of meaningful patterns and groups in time-evolving data. Traditional approaches, such as crisp clustering, rely on the assumption that clusters are sufficiently separated with little overlap. However, real-world data often defy this assumption, showing overlapping distributions or overlapping clouds of points and blurred boundaries between clusters. Fuzzy clustering offers a compelling alternative by allowing partial membership in multiple clusters, making it well-suited for these ambiguous scenarios. Despite its advantages, current fuzzy clustering methods primarily focus on univariate time series, and for multivariate cases, even datasets of moderate dimensionality become computationally prohibitive. This challenge is further exacerbated when dealing with time series of varying lengths, leaving a clear gap in addressing the complexities of modern datasets. This work introduces a novel fuzzy clustering approach based on common principal component analysis to address the aforementioned shortcomings. Our method has the advantage of efficiently handling high-dimensional multivariate time series by reducing dimensionality while preserving critical temporal features. Extensive numerical results show that our proposed clustering method outperforms several existing approaches in the literature. An interesting application involving brain signals from different drivers recorded from a simulated driving experiment illustrates the potential of the approach.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.