{"title":"The homotopy type of the linear group of Lebesgue–Bochner and Besov spaces","authors":"Marat Pliev , Fedor Sukochev , Anna Tomskova","doi":"10.1016/j.jfa.2025.111178","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we study the homotopical properties of linear groups of some Banach spaces. Our first main result asserts that for <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo><</mo><mo>∞</mo></math></span> the linear group <span><math><mi>G</mi><mi>L</mi><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> of the Lebesgue–Bochner space <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> is contractible to a point, where <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are both considered on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> equipped with the standard Lebesgue measure. The proof of this result is based on techniques drawn from the geometry of UMD-spaces. In addition, we establish the contractibility to a point of the general linear groups of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo><</mo><mo>∞</mo></math></span>. The proof is based on the techniques drawn from the theory of vector-valued Köthe spaces. We also prove that for <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span> and for a reflexive symmetric sequence space <em>E</em> the linear group <span><math><mi>G</mi><mi>L</mi><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo><mo>)</mo></math></span> is contractible to a point, where <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is the space of <em>p</em>-summable sequences and <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span> is the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-sum of <em>E</em> spaces. As a consequence of the latter result we deduce the contractibility to a point of the linear group of a Besov space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>q</mi></mrow></msubsup></math></span>, <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo><</mo><mo>∞</mo></math></span>, <span><math><mi>s</mi><mo>></mo><mn>0</mn></math></span>. We conclude with few open problems.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 12","pages":"Article 111178"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500360X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article we study the homotopical properties of linear groups of some Banach spaces. Our first main result asserts that for the linear group of the Lebesgue–Bochner space is contractible to a point, where and are both considered on equipped with the standard Lebesgue measure. The proof of this result is based on techniques drawn from the geometry of UMD-spaces. In addition, we establish the contractibility to a point of the general linear groups of and , . The proof is based on the techniques drawn from the theory of vector-valued Köthe spaces. We also prove that for and for a reflexive symmetric sequence space E the linear group is contractible to a point, where is the space of p-summable sequences and is the -sum of E spaces. As a consequence of the latter result we deduce the contractibility to a point of the linear group of a Besov space , , . We conclude with few open problems.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis