The homotopy type of the linear group of Lebesgue–Bochner and Besov spaces

IF 1.6 2区 数学 Q1 MATHEMATICS
Marat Pliev , Fedor Sukochev , Anna Tomskova
{"title":"The homotopy type of the linear group of Lebesgue–Bochner and Besov spaces","authors":"Marat Pliev ,&nbsp;Fedor Sukochev ,&nbsp;Anna Tomskova","doi":"10.1016/j.jfa.2025.111178","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we study the homotopical properties of linear groups of some Banach spaces. Our first main result asserts that for <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>&lt;</mo><mo>∞</mo></math></span> the linear group <span><math><mi>G</mi><mi>L</mi><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> of the Lebesgue–Bochner space <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> is contractible to a point, where <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are both considered on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> equipped with the standard Lebesgue measure. The proof of this result is based on techniques drawn from the geometry of UMD-spaces. In addition, we establish the contractibility to a point of the general linear groups of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>&lt;</mo><mo>∞</mo></math></span>. The proof is based on the techniques drawn from the theory of vector-valued Köthe spaces. We also prove that for <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span> and for a reflexive symmetric sequence space <em>E</em> the linear group <span><math><mi>G</mi><mi>L</mi><mo>(</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo><mo>)</mo></math></span> is contractible to a point, where <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is the space of <em>p</em>-summable sequences and <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span> is the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-sum of <em>E</em> spaces. As a consequence of the latter result we deduce the contractibility to a point of the linear group of a Besov space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>q</mi></mrow></msubsup></math></span>, <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>&lt;</mo><mo>∞</mo></math></span>, <span><math><mi>s</mi><mo>&gt;</mo><mn>0</mn></math></span>. We conclude with few open problems.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 12","pages":"Article 111178"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500360X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we study the homotopical properties of linear groups of some Banach spaces. Our first main result asserts that for 1<p,q< the linear group GL(Lp(Lq)) of the Lebesgue–Bochner space Lp(Lq) is contractible to a point, where Lp and Lq are both considered on [0,1] equipped with the standard Lebesgue measure. The proof of this result is based on techniques drawn from the geometry of UMD-spaces. In addition, we establish the contractibility to a point of the general linear groups of L1(Lp) and L(Lq), 1<p,q<. The proof is based on the techniques drawn from the theory of vector-valued Köthe spaces. We also prove that for 1<p< and for a reflexive symmetric sequence space E the linear group GL(p(E)) is contractible to a point, where p is the space of p-summable sequences and p(E) is the p-sum of E spaces. As a consequence of the latter result we deduce the contractibility to a point of the linear group of a Besov space Bps,q, 1<p,q<, s>0. We conclude with few open problems.
Lebesgue-Bochner与Besov空间线性群的同伦类型
本文研究了一些Banach空间的线性群的同调性质。我们的第一个主要结果表明,对于1<;p,q<∞,Lebesgue - bochner空间Lp(Lq)的线性群GL(Lp(Lq))可压缩到一个点,其中Lp和Lq都被认为是在[0,1]上配备了标准Lebesgue测度。这一结果的证明是基于从umd空间的几何绘制的技术。此外,我们建立了一般线性群L1(Lp)和L∞(Lq), 1<p,q<;∞的点的可缩并性。证明是基于从向量值Köthe空间理论中得出的技术。我们还证明了对于1<;p<;∞和对于一个自反对称序列空间E,线性群GL(l_p (E))是可缩并到一个点,其中l_p是p可和序列的空间,l_p (E)是E空间的l_p和。作为后一个结果的结果,我们推导出Besov空间的线性群Bps,q, 1<p,q<∞,s>;0的可缩并性。最后,我们提出了几个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信