Partial boundary regularity for the Navier–Stokes equations in irregular domains

IF 1.6 2区 数学 Q1 MATHEMATICS
Dominic Breit
{"title":"Partial boundary regularity for the Navier–Stokes equations in irregular domains","authors":"Dominic Breit","doi":"10.1016/j.jfa.2025.111188","DOIUrl":null,"url":null,"abstract":"<div><div>We prove partial regularity of suitable weak solutions to the Navier–Stokes equations at the boundary in irregular domains. In particular, we provide a criterion which yields continuity of the velocity field in a boundary point and obtain solutions which are continuous in a.a. boundary point (their existence is a consequence of a new maximal regularity result for the Stokes equations in domains with minimal regularity). We suppose that we have a Lipschitz boundary which belongs to the fractional Sobolev space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>p</mi><mo>,</mo><mi>p</mi></mrow></msup></math></span> for some <span><math><mi>p</mi><mo>&gt;</mo><mfrac><mrow><mn>15</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>. The same result was previously only known under the much stronger assumption of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-boundary.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 12","pages":"Article 111188"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003702","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove partial regularity of suitable weak solutions to the Navier–Stokes equations at the boundary in irregular domains. In particular, we provide a criterion which yields continuity of the velocity field in a boundary point and obtain solutions which are continuous in a.a. boundary point (their existence is a consequence of a new maximal regularity result for the Stokes equations in domains with minimal regularity). We suppose that we have a Lipschitz boundary which belongs to the fractional Sobolev space W21/p,p for some p>154. The same result was previously only known under the much stronger assumption of a C2-boundary.
不规则区域内Navier-Stokes方程的部分边界正则性
证明了在不规则区域边界处Navier-Stokes方程适当弱解的部分正则性。特别地,我们提供了速度场在边界点上连续的判据,并得到了在a.a.边界点上连续的解(它们的存在是Stokes方程在最小正则域上的一个新的极大正则性结果的结果)。我们假设我们有一个Lipschitz边界,它属于分数Sobolev空间W2−1/p,p对于某些p>;154。同样的结果以前只在更强的c2边界假设下才知道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信