Congruences for the smallest parts function associated with ω(q)

IF 1.2 2区 数学 Q2 MATHEMATICS
Renrong Mao
{"title":"Congruences for the smallest parts function associated with ω(q)","authors":"Renrong Mao","doi":"10.1016/j.jcta.2025.106106","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mtext>spt</mtext></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the smallest parts function associated with <span><math><mi>ω</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. Congruences for <span><math><msub><mrow><mtext>spt</mtext></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> modulo 5 are first obtained by Andrews, Dixit and Yee. Later, Wang and Yang established two families of congruences for <span><math><msub><mrow><mtext>spt</mtext></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> modulo powers of 5. More recently, Smoot provided another proof of these congruences and both of the two proofs utilize the Atkin operator <span><math><msub><mrow><mi>U</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>. In this paper, applying the Hecke operators, we obtain congruences for <span><math><msub><mrow><mtext>spt</mtext></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> modulo powers of primes <span><math><mi>ℓ</mi><mo>≥</mo><mn>5</mn></math></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106106"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525001013","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let sptω(n) denote the smallest parts function associated with ω(q). Congruences for sptω(n) modulo 5 are first obtained by Andrews, Dixit and Yee. Later, Wang and Yang established two families of congruences for sptω(n) modulo powers of 5. More recently, Smoot provided another proof of these congruences and both of the two proofs utilize the Atkin operator U5. In this paper, applying the Hecke operators, we obtain congruences for sptω(n) modulo powers of primes 5.
与ω(q)相关的最小部分函数的同余
设sptω(n)表示与ω(q)相关的最小部分函数。sptω(n)模5的同余式首先由Andrews, Dixit和Yee得到。后来,Wang和Yang建立了sptω(n) 5的模幂的两个同余族。最近,Smoot提供了这些同余的另一个证明,这两个证明都使用了Atkin算子U5。本文应用Hecke算子,得到了素数≥5的sptω(n)模幂的同余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信