Yong Han, Jinyan Yu, Xintong Liu, Fan Zhang, Xinyan Huang, Yao Lu, Weixiong Zhang, Ralf Zimmerman, Yinon Rudich, Qing Li, Jianmin Chen, Yingjun Chen* and Ling N. Jin*,
{"title":"Generation of More Potent Components at Higher Temperatures Offsets Toxicity Reduction despite Reduced Mass Emissions during Biomass Burning","authors":"Yong Han, Jinyan Yu, Xintong Liu, Fan Zhang, Xinyan Huang, Yao Lu, Weixiong Zhang, Ralf Zimmerman, Yinon Rudich, Qing Li, Jianmin Chen, Yingjun Chen* and Ling N. Jin*, ","doi":"10.1021/acs.est.5c05710","DOIUrl":null,"url":null,"abstract":"<p >Biomass burning organic aerosols (BBOAs) represent a major global health hazard. Their toxicity varies significantly due to the diversity of combustion conditions, which shape mixtures of components with differing toxic potency. We quantified component-specific contributions to intracellular reactive oxygen species generation in human bronchial epithelial cells exposed to BBOAs produced under controlled combustion conditions. Elevated combustion temperatures substantially reduced organic carbon (OC) mass emissions (by 20-fold) but resulted in a more modest reduction in OC toxicity emissions (by 5-fold). The toxicity emission reduction was primarily attributed to water-extractable OC (WOC), while methanol-extractable OC (MOC) limited this effect. The reduced emission of WOC toxicity was driven by the decreased mass emission of polar compounds such as methoxylates, as the toxicity per unit mass of WOC showed negligible changes across temperatures. In contrast, the toxicity per unit mass of MOC increased 10-fold from low to high temperatures, partially due to the formation of more potent aromatic derivatives, despite their smaller mass contribution. These findings underscore the importance of identifying key toxicity drivers to guide targeted source apportionment and refine strategies for reducing toxic emissions.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 36","pages":"19244–19256"},"PeriodicalIF":11.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.5c05710","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biomass burning organic aerosols (BBOAs) represent a major global health hazard. Their toxicity varies significantly due to the diversity of combustion conditions, which shape mixtures of components with differing toxic potency. We quantified component-specific contributions to intracellular reactive oxygen species generation in human bronchial epithelial cells exposed to BBOAs produced under controlled combustion conditions. Elevated combustion temperatures substantially reduced organic carbon (OC) mass emissions (by 20-fold) but resulted in a more modest reduction in OC toxicity emissions (by 5-fold). The toxicity emission reduction was primarily attributed to water-extractable OC (WOC), while methanol-extractable OC (MOC) limited this effect. The reduced emission of WOC toxicity was driven by the decreased mass emission of polar compounds such as methoxylates, as the toxicity per unit mass of WOC showed negligible changes across temperatures. In contrast, the toxicity per unit mass of MOC increased 10-fold from low to high temperatures, partially due to the formation of more potent aromatic derivatives, despite their smaller mass contribution. These findings underscore the importance of identifying key toxicity drivers to guide targeted source apportionment and refine strategies for reducing toxic emissions.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.