Acid-base pairs engineering enables ultra-selective lithium-magnesium separation via sulfonated polybenzimidazole membranes

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dong Huang  (, ), Xiaohui Ge  (, ), Qian Chen  (, ), Simian Fei  (, ), Qiuhua Li  (, ), Liang Ge  (, ), Tongwen Xu  (, )
{"title":"Acid-base pairs engineering enables ultra-selective lithium-magnesium separation via sulfonated polybenzimidazole membranes","authors":"Dong Huang \n (,&nbsp;),&nbsp;Xiaohui Ge \n (,&nbsp;),&nbsp;Qian Chen \n (,&nbsp;),&nbsp;Simian Fei \n (,&nbsp;),&nbsp;Qiuhua Li \n (,&nbsp;),&nbsp;Liang Ge \n (,&nbsp;),&nbsp;Tongwen Xu \n (,&nbsp;)","doi":"10.1007/s40843-025-3591-6","DOIUrl":null,"url":null,"abstract":"<div><p>Development of high-performance ion-selective membranes is crucial for achieving efficient ion separation in water treatment and energy storage applications. In this study, we demonstrate the strategic incorporation of acid-base pairs within a polybenzimidazole matrix through controlled sulfonation. By leveraging these intermolecular interactions, we enhance the Li<sup>+</sup>/Mg<sup>2+</sup> selectivity of the membrane. At an optimal sulfonation degree, the SP45 membrane forms a cross-linked structure, featuring contracted ionic clusters and discrete hydrophilic domains with limited interconnectivity. This unique microstructure imposes significantly higher energy barriers for the transmembrane transport of Mg<sup>2+</sup>, thereby endowing the SP45 membrane with exceptional perm-selectivity of 48.1 at a current density of 2 mA cm<sup>−2</sup>. Cycling stability tests reveal that the Li<sup>+</sup>/Mg<sup>2+</sup> selectivity degradation remains below 10% across multiple cycles in diverse mixed-salt systems. In practical brine ion distillation tests, we achieved a separation factor of exceeding 60,000 between Li<sup>+</sup> and Mg<sup>2+</sup> utilizing a 4-stage ion-distillation device equipped with the prepared SP45 membranes. This work provides fundamental insights into ion transport regulation through molecular-level acid-base pairs engineering, opening new avenues for advanced ion-selective separation membranes.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 9","pages":"3359 - 3367"},"PeriodicalIF":7.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3591-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Development of high-performance ion-selective membranes is crucial for achieving efficient ion separation in water treatment and energy storage applications. In this study, we demonstrate the strategic incorporation of acid-base pairs within a polybenzimidazole matrix through controlled sulfonation. By leveraging these intermolecular interactions, we enhance the Li+/Mg2+ selectivity of the membrane. At an optimal sulfonation degree, the SP45 membrane forms a cross-linked structure, featuring contracted ionic clusters and discrete hydrophilic domains with limited interconnectivity. This unique microstructure imposes significantly higher energy barriers for the transmembrane transport of Mg2+, thereby endowing the SP45 membrane with exceptional perm-selectivity of 48.1 at a current density of 2 mA cm−2. Cycling stability tests reveal that the Li+/Mg2+ selectivity degradation remains below 10% across multiple cycles in diverse mixed-salt systems. In practical brine ion distillation tests, we achieved a separation factor of exceeding 60,000 between Li+ and Mg2+ utilizing a 4-stage ion-distillation device equipped with the prepared SP45 membranes. This work provides fundamental insights into ion transport regulation through molecular-level acid-base pairs engineering, opening new avenues for advanced ion-selective separation membranes.

酸碱对工程通过磺化聚苯并咪唑膜实现超选择性锂镁分离
高性能离子选择膜的开发对于实现水处理和储能应用中的高效离子分离至关重要。在这项研究中,我们证明了通过控制磺化,在多苯并咪唑基质中战略性地结合酸碱对。通过利用这些分子间相互作用,我们增强了膜的Li+/Mg2+选择性。在最佳磺化度下,SP45膜形成交联结构,具有收缩的离子簇和离散的亲水畴,相互连接有限。这种独特的微观结构为Mg2+的跨膜传输施加了更高的能量垒,从而使SP45膜在电流密度为2 mA cm−2时具有48.1的超选择性。循环稳定性测试表明,在不同的混合盐体系中,Li+/Mg2+选择性降解在多次循环中保持在10%以下。在实际卤水离子蒸馏试验中,我们利用配备SP45膜的4级离子蒸馏装置实现了Li+和Mg2+的分离系数超过60,000。这项工作通过分子水平的酸碱对工程为离子转运调控提供了基本的见解,为先进的离子选择性分离膜开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信