Inducing B-site distortion in Gd3Sc1.5In0.5Ga3O12 garnet to accommodate Cr3+ ions: achieving high quantum efficiency and thermally stable broadband NIR phosphors for NIR spectroscopy applications
IF 7.4 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Inducing B-site distortion in Gd3Sc1.5In0.5Ga3O12 garnet to accommodate Cr3+ ions: achieving high quantum efficiency and thermally stable broadband NIR phosphors for NIR spectroscopy applications","authors":"Di Qian, Yahong Jin, Haoyi Wu, Yihua Hu","doi":"10.1007/s40843-025-3469-7","DOIUrl":null,"url":null,"abstract":"<p>Broadband near-infrared (NIR) phosphors are crucial for assembling portable NIR light sources. However, developing efficient and thermally stable broadband NIR phosphors remains challenging. Here, a novel Cr<sup>3+</sup>-doped garnet phosphor, Gd<sub>3</sub>Sc<sub>1.5</sub>In<sub>0.5</sub>Ga<sub>3</sub>O<sub>12</sub>:Cr<sup>3+</sup>, is developed by modulating the six-coordinate polyhedral structure. Under 460 nm blue light excitation, it exhibits broadband NIR emission centered at 775 nm with a full width at half maximum (FWHM) exceeding 135 nm, which is attributed to the increased distortion of the B-sites via cation substitution. Specifically, substituting Sc<sup>3+</sup> with In<sup>3+</sup> in the designed samples reduces the local site symmetry, overcomes the parity selection rule, and results in greater oscillator strength for electronic transitions, thereby improving optical properties. This leads to an impressive internal quantum efficiency (IQE) of 98.29%, along with excellent thermal stability performance (<i>I</i><sub>423 K</sub> = 85.50%), which is conducive to practical applications in NIR light sources. The NIR phosphor-converted light-emitting diode (pc-LED) fabricated with the optimized phosphor and a 460 nm blue LED chip demonstrates an outstanding NIR power conversion efficiency (PCE) of 19.75% at 30 mA and an NIR output power of 276.01 mW at 1200 mA. Potential applications in night vision, non-invasive imaging, and non-destructive testing are explored. These results highlight the enhancement of phosphor performance through cation substitution strategies, achieving a balance between QE and thermal stability. These findings are expected to promote the development of NIR pc-LEDs as high-performance light sources for miniaturized NIR spectrometers.\n</p>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"11 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40843-025-3469-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Broadband near-infrared (NIR) phosphors are crucial for assembling portable NIR light sources. However, developing efficient and thermally stable broadband NIR phosphors remains challenging. Here, a novel Cr3+-doped garnet phosphor, Gd3Sc1.5In0.5Ga3O12:Cr3+, is developed by modulating the six-coordinate polyhedral structure. Under 460 nm blue light excitation, it exhibits broadband NIR emission centered at 775 nm with a full width at half maximum (FWHM) exceeding 135 nm, which is attributed to the increased distortion of the B-sites via cation substitution. Specifically, substituting Sc3+ with In3+ in the designed samples reduces the local site symmetry, overcomes the parity selection rule, and results in greater oscillator strength for electronic transitions, thereby improving optical properties. This leads to an impressive internal quantum efficiency (IQE) of 98.29%, along with excellent thermal stability performance (I423 K = 85.50%), which is conducive to practical applications in NIR light sources. The NIR phosphor-converted light-emitting diode (pc-LED) fabricated with the optimized phosphor and a 460 nm blue LED chip demonstrates an outstanding NIR power conversion efficiency (PCE) of 19.75% at 30 mA and an NIR output power of 276.01 mW at 1200 mA. Potential applications in night vision, non-invasive imaging, and non-destructive testing are explored. These results highlight the enhancement of phosphor performance through cation substitution strategies, achieving a balance between QE and thermal stability. These findings are expected to promote the development of NIR pc-LEDs as high-performance light sources for miniaturized NIR spectrometers.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.