Multisite-steered C–C coupling for photocatalytic air-concentration CO2 reduction into C2H6

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Guangbing Huang, Dongpo He, Ziyao Zhou, Wensheng Yan, Yang Pan, Jun Hu, Junfa Zhu, Xiaodong Zhang, Yuming Dong, Jiaqi Xu, Xingchen Jiao
{"title":"Multisite-steered C–C coupling for photocatalytic air-concentration CO2 reduction into C2H6","authors":"Guangbing Huang, Dongpo He, Ziyao Zhou, Wensheng Yan, Yang Pan, Jun Hu, Junfa Zhu, Xiaodong Zhang, Yuming Dong, Jiaqi Xu, Xingchen Jiao","doi":"10.1007/s40843-025-3464-4","DOIUrl":null,"url":null,"abstract":"<p>Efforts to photoconvert carbon dioxide (CO<sub>2</sub>) into C<sub>2</sub> products are primarily hindered by the significant energy barrier of C–C coupling step. Herein, we incorporate active metal particles with localized surface plasmon resonance on metal oxide nanosheets. Also, we construct multiple metal pair sites to boost C–C coupling, thus promoting the formation of C<sub>2</sub> fuels. Taking Au nanoparticles on the Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> nanosheets as an example, high-resolution transmission electron microscopy images and X-ray photoelectron spectroscopy illuminate the Au-Ti metal pair sites on the Au-Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> nanosheets. <i>In situ</i> Fourier transform infrared spectra reveal the presence of the *OCCOH intermediate on the surface of Au-Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> nanosheets during CO<sub>2</sub> photoreduction, while the intermediate is not detected on the Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> nanosheets. Accordingly, the Au-Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> nanosheets realize photoreduction of atmospheric-concentration CO<sub>2</sub> into ethane using a single catalyst. By contrast, the Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> nanosheets alone are limited to producing C<sub>1</sub> products such as carbon monoxide and methane.\n</p>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"203 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40843-025-3464-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efforts to photoconvert carbon dioxide (CO2) into C2 products are primarily hindered by the significant energy barrier of C–C coupling step. Herein, we incorporate active metal particles with localized surface plasmon resonance on metal oxide nanosheets. Also, we construct multiple metal pair sites to boost C–C coupling, thus promoting the formation of C2 fuels. Taking Au nanoparticles on the Bi4Ti3O12 nanosheets as an example, high-resolution transmission electron microscopy images and X-ray photoelectron spectroscopy illuminate the Au-Ti metal pair sites on the Au-Bi4Ti3O12 nanosheets. In situ Fourier transform infrared spectra reveal the presence of the *OCCOH intermediate on the surface of Au-Bi4Ti3O12 nanosheets during CO2 photoreduction, while the intermediate is not detected on the Bi4Ti3O12 nanosheets. Accordingly, the Au-Bi4Ti3O12 nanosheets realize photoreduction of atmospheric-concentration CO2 into ethane using a single catalyst. By contrast, the Bi4Ti3O12 nanosheets alone are limited to producing C1 products such as carbon monoxide and methane.

光催化空气浓度CO2还原成C2H6的多位点导向C-C耦合
二氧化碳(CO2)光转化为C2产物的努力主要受到C-C耦合步骤的显著能量障碍的阻碍。在此,我们将具有局部表面等离子体共振的活性金属粒子结合在金属氧化物纳米片上。此外,我们构建了多个金属对位点来促进C-C偶联,从而促进C2燃料的形成。以Bi4Ti3O12纳米片上的Au纳米粒子为例,采用高分辨率透射电镜和x射线光电子能谱对Au- ti纳米片上的金属对位点进行了研究。原位傅里叶变换红外光谱揭示了CO2光还原过程中Au-Bi4Ti3O12纳米片表面存在*OCCOH中间体,而在Bi4Ti3O12纳米片上没有检测到该中间体。因此,Au-Bi4Ti3O12纳米片利用单一催化剂实现了大气浓度CO2光还原成乙烷。相比之下,单独的Bi4Ti3O12纳米片仅限于生产一氧化碳和甲烷等C1产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信