Superlattice ordering Pt2CoNi intermetallic nanocatalysts with surface microstrain for efficient hydrogen electrocatalysis

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tao Zhang  (, ), Xin Wang  (, ), Wanqing Song  (, ), Jiahui Feng  (, ), Xinyi Yang  (, ), Haozhi Wang  (, ), Jia Ding  (, ), Wenbin Hu  (, )
{"title":"Superlattice ordering Pt2CoNi intermetallic nanocatalysts with surface microstrain for efficient hydrogen electrocatalysis","authors":"Tao Zhang \n (,&nbsp;),&nbsp;Xin Wang \n (,&nbsp;),&nbsp;Wanqing Song \n (,&nbsp;),&nbsp;Jiahui Feng \n (,&nbsp;),&nbsp;Xinyi Yang \n (,&nbsp;),&nbsp;Haozhi Wang \n (,&nbsp;),&nbsp;Jia Ding \n (,&nbsp;),&nbsp;Wenbin Hu \n (,&nbsp;)","doi":"10.1007/s40843-025-3525-6","DOIUrl":null,"url":null,"abstract":"<div><p>Alloying Pt with non-noble metals is effective for optimizing the activity of Pt-based electrocatalysts. However, the development of high-activity and stable hydrogen electrocatalysts remains challenging owing to the random elemental distribution and weak interatomic bonding in alloys. Herein, we reported a Pt<sub>2</sub>CoNi intermetallic nanocatalyst rich in surface microstrain for high-performance hydrogen electrocatalysis. The superlattice ordering crystalline structure ensures the specific positions of atoms in this nanocatalyst, resulting in the alternating arrangement of Pt and Co/Ni atoms. In one nanoparticle, multiple Pt<sub>2</sub>CoNi grains are arranged along different grain orientations, which generates abundant surface microstrain due to the discrepancy of intermetallic lattice parameters. The unique crystal structure effectively modulates the electron distribution of Pt<sub>2</sub>CoNi intermetallic nanocatalyst. The active sites of this nanocatalyst exhibit downshifted d-band centers, leading to accelerated hydrogen adsorption/desorption behavior. Resultantly, the Pt<sub>2</sub>CoNi intermetallic nanocatalyst demonstrates impressive bifunctional hydrogen electrocatalytic capabilities for hydrogen evolution reaction (mass activity of 1.02 A/mg<sub>Pt</sub> and <i>η</i><sub>10</sub> variation of 3.7 mV after 10,000 cycles) and hydrogen oxidation reaction (kinetic mass activity of 4.08 A/mg<sub>Pt</sub> and 97.3% activity retention after 12 h operating at 0.1 V vs. RHE). This work provides a promising route for the development of efficient nanocatalysts with ingenious crystal structures.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 9","pages":"3304 - 3312"},"PeriodicalIF":7.4000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3525-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Alloying Pt with non-noble metals is effective for optimizing the activity of Pt-based electrocatalysts. However, the development of high-activity and stable hydrogen electrocatalysts remains challenging owing to the random elemental distribution and weak interatomic bonding in alloys. Herein, we reported a Pt2CoNi intermetallic nanocatalyst rich in surface microstrain for high-performance hydrogen electrocatalysis. The superlattice ordering crystalline structure ensures the specific positions of atoms in this nanocatalyst, resulting in the alternating arrangement of Pt and Co/Ni atoms. In one nanoparticle, multiple Pt2CoNi grains are arranged along different grain orientations, which generates abundant surface microstrain due to the discrepancy of intermetallic lattice parameters. The unique crystal structure effectively modulates the electron distribution of Pt2CoNi intermetallic nanocatalyst. The active sites of this nanocatalyst exhibit downshifted d-band centers, leading to accelerated hydrogen adsorption/desorption behavior. Resultantly, the Pt2CoNi intermetallic nanocatalyst demonstrates impressive bifunctional hydrogen electrocatalytic capabilities for hydrogen evolution reaction (mass activity of 1.02 A/mgPt and η10 variation of 3.7 mV after 10,000 cycles) and hydrogen oxidation reaction (kinetic mass activity of 4.08 A/mgPt and 97.3% activity retention after 12 h operating at 0.1 V vs. RHE). This work provides a promising route for the development of efficient nanocatalysts with ingenious crystal structures.

具有表面微应变的超晶格有序Pt2CoNi金属间纳米催化剂用于高效氢电催化
将Pt与非贵金属合金化可以有效地优化Pt基电催化剂的活性。然而,由于合金中元素的随机分布和弱的原子间键,开发高活性和稳定的氢电催化剂仍然是一个挑战。本文报道了一种具有丰富表面微应变的Pt2CoNi金属间纳米催化剂,用于高性能氢电催化。超晶格有序的晶体结构确保了纳米催化剂中原子的特定位置,从而导致Pt和Co/Ni原子的交替排列。在一个纳米颗粒中,多个Pt2CoNi晶粒沿不同晶粒取向排列,由于金属间晶格参数的差异,产生了丰富的表面微应变。独特的晶体结构有效地调节了Pt2CoNi金属间纳米催化剂的电子分布。该纳米催化剂的活性位点表现为d带中心的下移,从而加速了氢的吸附/解吸行为。结果表明,Pt2CoNi金属间纳米催化剂在析氢反应(质量活性为1.02 A/mgPt,循环10000次后η值变化为3.7 mV)和氢氧化反应(动力学质量活性为4.08 A/mgPt,在0.1 V / RHE下工作12 h后活性保持率为97.3%)中表现出令人印象良好的双功能氢电催化能力。这项工作为开发具有巧妙晶体结构的高效纳米催化剂提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信