Broadband-absorbing structurally distorted cocrystal with enhanced nonradiative decay for solar interfacial water evaporation

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yi Su  (, ), Zefei Zheng  (, ), Lingjie Sun  (, ), Wenzhe Sun  (, ), Yongqi Zhang  (, ), Huapeng Liu  (, ), Chenfei Yang  (, ), Shouzhen Li  (, ), Miaoyu Wang  (, ), Xing Chen  (, ), Shuaishuai Ding  (, ), Fangxu Yang  (, ), Xiaotao Zhang  (, )
{"title":"Broadband-absorbing structurally distorted cocrystal with enhanced nonradiative decay for solar interfacial water evaporation","authors":"Yi Su \n (,&nbsp;),&nbsp;Zefei Zheng \n (,&nbsp;),&nbsp;Lingjie Sun \n (,&nbsp;),&nbsp;Wenzhe Sun \n (,&nbsp;),&nbsp;Yongqi Zhang \n (,&nbsp;),&nbsp;Huapeng Liu \n (,&nbsp;),&nbsp;Chenfei Yang \n (,&nbsp;),&nbsp;Shouzhen Li \n (,&nbsp;),&nbsp;Miaoyu Wang \n (,&nbsp;),&nbsp;Xing Chen \n (,&nbsp;),&nbsp;Shuaishuai Ding \n (,&nbsp;),&nbsp;Fangxu Yang \n (,&nbsp;),&nbsp;Xiaotao Zhang \n (,&nbsp;)","doi":"10.1007/s40843-025-3563-0","DOIUrl":null,"url":null,"abstract":"<div><p>Organic cocrystals have become increasingly prevalent in a variety of research domains, owing to the simple preparation, cost-effectiveness, and highly tunable properties. Particularly, the strong charge transfer (CT) interactions in cocrystals render them promising candidates for high-efficiency photothermal conversion materials. However, the majority of reported organic photothermal cocrystals exhibit planar and rigid π-conjugated structures, which restrict molecular vibrations while simultaneously impeding non-radiative dissipation processes—ultimately hindering the enhancement of photothermal conversion performance. Herein, we design a novel non-planar photothermal NMTQ cocrystal, which shows a broadband absorption range of 220–2000 nm and high photothermal conversion efficiencies from ultraviolet (UV) to near-infrared (NIR)-II region. Quantum chemical calculations have been utilized to demonstrate that the distorted butterfly-like conformation in NMTQ is conducive to non-radiative transitions via higher non-adiabatic couplings (NACs) and lower spatial overlap integral (<i>S</i><sub>r</sub>). An interfacial solar evaporation system was constructed using NMTQ cocrystals, achieving an evaporation rate of 2.158 kg m<sup>−2</sup> h<sup>−1</sup> with 94.96% solar-to-vapor conversion efficiency under 1 Sun irradiation. The photothermal platform demonstrated simultaneous contaminant removal functionality, establishing a sustainable strategy for clean water production through rational photothermal material design.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 9","pages":"3203 - 3211"},"PeriodicalIF":7.4000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3563-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic cocrystals have become increasingly prevalent in a variety of research domains, owing to the simple preparation, cost-effectiveness, and highly tunable properties. Particularly, the strong charge transfer (CT) interactions in cocrystals render them promising candidates for high-efficiency photothermal conversion materials. However, the majority of reported organic photothermal cocrystals exhibit planar and rigid π-conjugated structures, which restrict molecular vibrations while simultaneously impeding non-radiative dissipation processes—ultimately hindering the enhancement of photothermal conversion performance. Herein, we design a novel non-planar photothermal NMTQ cocrystal, which shows a broadband absorption range of 220–2000 nm and high photothermal conversion efficiencies from ultraviolet (UV) to near-infrared (NIR)-II region. Quantum chemical calculations have been utilized to demonstrate that the distorted butterfly-like conformation in NMTQ is conducive to non-radiative transitions via higher non-adiabatic couplings (NACs) and lower spatial overlap integral (Sr). An interfacial solar evaporation system was constructed using NMTQ cocrystals, achieving an evaporation rate of 2.158 kg m−2 h−1 with 94.96% solar-to-vapor conversion efficiency under 1 Sun irradiation. The photothermal platform demonstrated simultaneous contaminant removal functionality, establishing a sustainable strategy for clean water production through rational photothermal material design.

具有增强非辐射衰减的宽带吸收结构畸变共晶
有机共晶由于其制备简单、成本效益高、可调性好等优点,在许多研究领域中越来越普遍。特别是,共晶中的强电荷转移(CT)相互作用使它们成为高效光热转换材料的有希望的候选者。然而,大多数报道的有机光热共晶呈现平面和刚性π共轭结构,这限制了分子振动,同时阻碍了非辐射耗散过程,最终阻碍了光热转换性能的提高。在此,我们设计了一种新型的非平面光热NMTQ共晶,它具有220-2000 nm的宽带吸收范围和从紫外(UV)到近红外(NIR)-II区的高光热转换效率。量子化学计算表明,NMTQ中扭曲的蝴蝶状构象通过较高的非绝热耦合(NACs)和较低的空间重叠积分(Sr)有利于非辐射跃迁。利用NMTQ共晶构建了一个界面太阳蒸发系统,在1次太阳照射下,蒸发速率为2.158 kg m−2 h−1,太阳-水蒸气转化效率为94.96%。光热平台展示了同时去除污染物的功能,通过合理的光热材料设计,建立了可持续的清洁水生产策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信