Piercarlo Bonifacio, Elisabetta Caffau, Patrick François, Monique Spite
{"title":"The most metal-poor stars","authors":"Piercarlo Bonifacio, Elisabetta Caffau, Patrick François, Monique Spite","doi":"10.1007/s00159-025-00159-2","DOIUrl":null,"url":null,"abstract":"<div><p>The most metal-poor stars found in the Galaxy and in nearby galaxies are witnesses of the early evolution of the Universe. In a general picture in which we expect the metallicity to increase monotonically with time, as a result of the metal production in stars, we also expect the most metal-poor stars to be the most primitive objects accessible to our observations. The abundance ratios in these stars provide us important information on the first generations of stars that synthesised the nuclei that we observe in these stars. Because they are so primitive, the modelling of their chemical inventory can be often satisfactorily achieved by assuming that all the metals were produced in a single Supernova, or just a few. This is simpler than modelling the full chemical evolution, using different sources, that is necessary at higher metallicity. The price to pay for this relative ease of interpretation is that these stars are extremely rare and require specifically tailored observational strategies in order to assemble statistically significant samples of stars. In this review, we try to summarise the main observational results that have been obtained in the last ten years.</p></div>","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"33 1","pages":""},"PeriodicalIF":26.5000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00159-025-00159-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The most metal-poor stars found in the Galaxy and in nearby galaxies are witnesses of the early evolution of the Universe. In a general picture in which we expect the metallicity to increase monotonically with time, as a result of the metal production in stars, we also expect the most metal-poor stars to be the most primitive objects accessible to our observations. The abundance ratios in these stars provide us important information on the first generations of stars that synthesised the nuclei that we observe in these stars. Because they are so primitive, the modelling of their chemical inventory can be often satisfactorily achieved by assuming that all the metals were produced in a single Supernova, or just a few. This is simpler than modelling the full chemical evolution, using different sources, that is necessary at higher metallicity. The price to pay for this relative ease of interpretation is that these stars are extremely rare and require specifically tailored observational strategies in order to assemble statistically significant samples of stars. In this review, we try to summarise the main observational results that have been obtained in the last ten years.
期刊介绍:
The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.