Metabolic versatility enables acetogens to colonize ruminants with diet-driven niche partitioning

Qiushuang Li, Rong Wang, Xiang Zhou, Shuya Li, Shizhe Zhang, Xiumin Zhang, Wenxing Wang, Jinzhen Jiao, Peter H Janssen, Emilio M Ungerfeld, Volker Müller, Ralf Conrad, Chris Greening, Zhiliang Tan, Bo Fu, Min Wang
{"title":"Metabolic versatility enables acetogens to colonize ruminants with diet-driven niche partitioning","authors":"Qiushuang Li, Rong Wang, Xiang Zhou, Shuya Li, Shizhe Zhang, Xiumin Zhang, Wenxing Wang, Jinzhen Jiao, Peter H Janssen, Emilio M Ungerfeld, Volker Müller, Ralf Conrad, Chris Greening, Zhiliang Tan, Bo Fu, Min Wang","doi":"10.1093/ismejo/wraf183","DOIUrl":null,"url":null,"abstract":"Enteric methane emissions are energy losses from farmed ruminants and contribute to global warming. Diverting electrons and H2 flow toward beneficial fermentation products would mitigate ruminal methane emissions while improving feed efficiency. Acetogens can direct H2 and electrons to acetate production via the Wood–Ljungdahl pathway, but methanogens have more competitive H2 affinities. Thus, it is unclear how acetogenesis subsists in the rumen. An analysis of 2102 globally derived rumen metagenomes from multiple ruminant species revealed that putative acetogens were phylogenetically diverse and capable of using carbohydrates or H2 as electron donors. The metabolic versatility of these acetogens may enable them to outcompete methanogens with lower versatility. Through animal trials, in vitro experiments, and DNA stable isotope probing, we verified the presence of diverse acetogens in beef cattle rumens and revealed that their niche partitioning is driven by contrasting fiber-rich and starch-rich diets. A fiber-rich diet enriched heterotrophic acetogens, which increased acetate formation while decreasing methane production. Overall, this study highlights the overlooked heterotrophy of acetogens in the rumen and their potential for mitigating enteric methane emissions.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Enteric methane emissions are energy losses from farmed ruminants and contribute to global warming. Diverting electrons and H2 flow toward beneficial fermentation products would mitigate ruminal methane emissions while improving feed efficiency. Acetogens can direct H2 and electrons to acetate production via the Wood–Ljungdahl pathway, but methanogens have more competitive H2 affinities. Thus, it is unclear how acetogenesis subsists in the rumen. An analysis of 2102 globally derived rumen metagenomes from multiple ruminant species revealed that putative acetogens were phylogenetically diverse and capable of using carbohydrates or H2 as electron donors. The metabolic versatility of these acetogens may enable them to outcompete methanogens with lower versatility. Through animal trials, in vitro experiments, and DNA stable isotope probing, we verified the presence of diverse acetogens in beef cattle rumens and revealed that their niche partitioning is driven by contrasting fiber-rich and starch-rich diets. A fiber-rich diet enriched heterotrophic acetogens, which increased acetate formation while decreasing methane production. Overall, this study highlights the overlooked heterotrophy of acetogens in the rumen and their potential for mitigating enteric methane emissions.
代谢的多功能性使氧气能够通过饮食驱动的生态位分配来殖民反刍动物
肠道甲烷排放是养殖反刍动物的能量损失,是导致全球变暖的原因之一。将电子和氢气流向有益的发酵产物可以减少瘤胃甲烷排放,同时提高饲料效率。产氢菌可以通过Wood-Ljungdahl途径引导H2和电子生成乙酸,但产甲烷菌具有更强的H2亲和力。因此,目前尚不清楚丙酮生成是如何在瘤胃中发生的。对来自全球多个反刍动物物种的2102个瘤胃元基因组的分析表明,假定的产氧源具有系统发育多样性,能够使用碳水化合物或氢气作为电子供体。这些产氧菌代谢的多功能性可能使它们能够胜过多功能性较低的产甲烷菌。通过动物实验、体外实验和DNA稳定同位素探测,我们证实了肉牛瘤胃中存在多种食源性,并揭示了它们的生态位分配是由富含纤维和富含淀粉的饮食差异驱动的。富含纤维的日粮丰富了异养醋酸,增加了乙酸的形成,同时减少了甲烷的产生。总的来说,这项研究强调了瘤胃中被忽视的异养性以及它们减轻肠道甲烷排放的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信