General boosted black holes: a first approximation

IF 3.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Rodrigo Maier
{"title":"General boosted black holes: a first approximation","authors":"Rodrigo Maier","doi":"10.1088/1361-6382/adfc1f","DOIUrl":null,"url":null,"abstract":"In this paper we obtain an approximate solution of Einstein field equations which describes a general boosted Kerr–Newman black hole relative to a Lorentz frame at future null infinity. The boosted black hole is obtained from a general twisting metric whose boost emerges from the Bondi–Metzner–Sachs group. Employing a standard procedure we build the electromagnetic energy-momentum tensor with the Kerr boosted metric together with its timelike killing vector as the electromagnetic potential. We demonstrate that our solution satisfies Einstein field equations up to a fourth-order expansion in 1/r, indicating that the spacetime closely resembles a Kerr–Newman black hole whose boost points in a arbitrary direction. Spacetime structures of the general black hole—namely the event horizon and ergosphere—are examined in Bondi–Sachs coordinates. For a proper timelike observer we show that the electric field generated by the boosted black hole exhibits a purely radial behavior, whereas the magnetic field develops a complex structure characterized by two pronounced lobes oriented opposite to the boost direction.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"27 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adfc1f","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we obtain an approximate solution of Einstein field equations which describes a general boosted Kerr–Newman black hole relative to a Lorentz frame at future null infinity. The boosted black hole is obtained from a general twisting metric whose boost emerges from the Bondi–Metzner–Sachs group. Employing a standard procedure we build the electromagnetic energy-momentum tensor with the Kerr boosted metric together with its timelike killing vector as the electromagnetic potential. We demonstrate that our solution satisfies Einstein field equations up to a fourth-order expansion in 1/r, indicating that the spacetime closely resembles a Kerr–Newman black hole whose boost points in a arbitrary direction. Spacetime structures of the general black hole—namely the event horizon and ergosphere—are examined in Bondi–Sachs coordinates. For a proper timelike observer we show that the electric field generated by the boosted black hole exhibits a purely radial behavior, whereas the magnetic field develops a complex structure characterized by two pronounced lobes oriented opposite to the boost direction.
一般助推黑洞:第一近似
本文得到了爱因斯坦场方程的近似解,该方程描述了在未来零无穷远处相对于洛伦兹坐标系的一般推进Kerr-Newman黑洞。被提振的黑洞是由一个一般的扭曲度规得到的,它的提振来自邦迪-梅茨纳-萨克斯群。我们采用标准程序建立了电磁能量动量张量,其中克尔增强度规和它的类时杀伤向量作为电磁势。我们证明了我们的解满足爱因斯坦场方程直到1/r的四阶展开,表明时空非常类似于克尔-纽曼黑洞,其升力指向任意方向。一般黑洞的时空结构——即视界和遍历层——在邦迪-萨克斯坐标系中进行了检验。对于一个固有时型观测者,我们证明了被增强黑洞产生的电场表现出纯粹的径向行为,而磁场则发展出一个复杂的结构,其特征是两个与增强方向相反的明显叶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信