Christopher L. Kibler, Gregory R. Quetin, Anna T. Trugman
{"title":"Evapotranspiration Sensitivity to Environmental Variability Provides a Window Into Subsurface Processes in the Soil-Plant-Atmosphere Continuum","authors":"Christopher L. Kibler, Gregory R. Quetin, Anna T. Trugman","doi":"10.1029/2025JG009097","DOIUrl":null,"url":null,"abstract":"<p>Evapotranspiration (ET) is co-regulated by subsurface water availability, atmospheric demand for water, and radiation. Spatial differences in the limiting factors on ET that emerge along the soil-plant-atmosphere continuum result in distinct ecohydrological regimes with differing sensitivities to atmospheric and subsurface drivers. However, different components of the soil-plant-atmosphere continuum are not equally well understood. Deep subsurface water access is particularly difficult to measure and model, but can sustain ET under drought conditions when shallow soil moisture appears to be acutely limiting. Here, we exploited this principle to identify ecosystems that rely on deep subsurface water availability. We first used a plant hydraulic model to determine the expected ET behavior for plants with deep water access. We then examined 19 flux towers and found that responsiveness of ET to atmospheric conditions during dry periods was indicative of some ecosystems with deep water access. We used the divergent sensitivities of ET to vapor pressure deficit, radiation, and shallow soil moisture to identify distinct ecohydrological regimes in gridded data covering the continental U.S. We diagnosed deep water usage in ecosystems where ET remained sensitive to atmospheric conditions despite being insensitive to shallow soil moisture variability. Further, we found that drought stress, plant hydraulic traits, and ecosystem biophysical variables mediated the sensitivity of ET to aboveground and belowground conditions.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JG009097","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Evapotranspiration (ET) is co-regulated by subsurface water availability, atmospheric demand for water, and radiation. Spatial differences in the limiting factors on ET that emerge along the soil-plant-atmosphere continuum result in distinct ecohydrological regimes with differing sensitivities to atmospheric and subsurface drivers. However, different components of the soil-plant-atmosphere continuum are not equally well understood. Deep subsurface water access is particularly difficult to measure and model, but can sustain ET under drought conditions when shallow soil moisture appears to be acutely limiting. Here, we exploited this principle to identify ecosystems that rely on deep subsurface water availability. We first used a plant hydraulic model to determine the expected ET behavior for plants with deep water access. We then examined 19 flux towers and found that responsiveness of ET to atmospheric conditions during dry periods was indicative of some ecosystems with deep water access. We used the divergent sensitivities of ET to vapor pressure deficit, radiation, and shallow soil moisture to identify distinct ecohydrological regimes in gridded data covering the continental U.S. We diagnosed deep water usage in ecosystems where ET remained sensitive to atmospheric conditions despite being insensitive to shallow soil moisture variability. Further, we found that drought stress, plant hydraulic traits, and ecosystem biophysical variables mediated the sensitivity of ET to aboveground and belowground conditions.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology