Andrew M. Kelleher, Hong Im Kim, Greeshma Sai Bayammagari, Daniel J. Davis, Thomas E. Spencer
{"title":"A Cxcl15 Cre Recombinase Mouse Model Useful to Study Gland Development in the Uterus","authors":"Andrew M. Kelleher, Hong Im Kim, Greeshma Sai Bayammagari, Daniel J. Davis, Thomas E. Spencer","doi":"10.1002/dvg.70026","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The mammalian uterus contains glands in the endometrium that develop only or primarily after birth. In the mouse, endometrial glands govern post implantation pregnancy establishment via regulation of blastocyst implantation, stromal cell decidualization, and placental development. Here, we describe a new uterine glandular epithelium (GE) specific Cre recombinase mouse line that is useful to study endometrial gland development and function. Utilizing CRISPR-Cas9 genome editing, improved Cre recombinase (iCre) was inserted into the endogenous C-X-C motif chemokine ligand 15 (<i>Cxcl15</i>) gene. <i>Cxcl15</i> mRNA, Cxcl15 protein, and <i>Cxcl15-iCre</i> recombinase activity were specific to the developing GE of the uterus. <i>Cxcl15-iCre</i> mice were crossed with floxed <i>Foxa2</i> mice to conditionally delete Foxa2 specifically in the glands of the neonatal mouse uterus. This conditional deletion of Foxa2 in the developing neonatal uterus resulted in adult mice that lacked Foxa2 in the GE of the uterus, and the adult mice were infertile. The studies described here establish that <i>Cxcl15-iCre</i> mice are a valuable resource to elucidate and explore mechanisms regulating the development and function of glands in the uterus.</p>\n </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"63 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"genesis","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.70026","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The mammalian uterus contains glands in the endometrium that develop only or primarily after birth. In the mouse, endometrial glands govern post implantation pregnancy establishment via regulation of blastocyst implantation, stromal cell decidualization, and placental development. Here, we describe a new uterine glandular epithelium (GE) specific Cre recombinase mouse line that is useful to study endometrial gland development and function. Utilizing CRISPR-Cas9 genome editing, improved Cre recombinase (iCre) was inserted into the endogenous C-X-C motif chemokine ligand 15 (Cxcl15) gene. Cxcl15 mRNA, Cxcl15 protein, and Cxcl15-iCre recombinase activity were specific to the developing GE of the uterus. Cxcl15-iCre mice were crossed with floxed Foxa2 mice to conditionally delete Foxa2 specifically in the glands of the neonatal mouse uterus. This conditional deletion of Foxa2 in the developing neonatal uterus resulted in adult mice that lacked Foxa2 in the GE of the uterus, and the adult mice were infertile. The studies described here establish that Cxcl15-iCre mice are a valuable resource to elucidate and explore mechanisms regulating the development and function of glands in the uterus.
期刊介绍:
As of January 2000, Developmental Genetics was renamed and relaunched as genesis: The Journal of Genetics and Development, with a new scope and Editorial Board. The journal focuses on work that addresses the genetics of development and the fundamental mechanisms of embryological processes in animals and plants. With increased awareness of the interplay between genetics and evolutionary change, particularly during developmental processes, we encourage submission of manuscripts from all ecological niches. The expanded numbers of genomes for which sequencing is being completed will facilitate genetic and genomic examination of developmental issues, even if the model system does not fit the “classical genetic” mold. Therefore, we encourage submission of manuscripts from all species. Other areas of particular interest include: 1) the roles of epigenetics, microRNAs and environment on developmental processes; 2) genome-wide studies; 3) novel imaging techniques for the study of gene expression and cellular function; 4) comparative genetics and genomics and 5) animal models of human genetic and developmental disorders.
genesis presents reviews, full research articles, short research letters, and state-of-the-art technology reports that promote an understanding of the function of genes and the roles they play in complex developmental processes.