On the interaction of a linear plug nozzle flow with sub-, trans-, and supersonic outer flow

IF 2.5 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Paul Wißmann, Christian J. Kähler, Sven Scharnowski
{"title":"On the interaction of a linear plug nozzle flow with sub-, trans-, and supersonic outer flow","authors":"Paul Wißmann,&nbsp;Christian J. Kähler,&nbsp;Sven Scharnowski","doi":"10.1007/s00348-025-04098-7","DOIUrl":null,"url":null,"abstract":"<div><p>A plug/aerospike nozzle is a promising concept as a propulsion system for space launchers and space planes. The inherent ability to adapt the nozzle jet to the ambient pressure level improves the thrust performance under overexpanded operating conditions compared to conventional bell nozzles, which is of great interest for future single-stage-to-orbit vehicles. This experimental study investigates the topology and aerodynamics of a cold flow linear plug nozzle jet in an outer flow environment. PIV and high-speed schlieren measurements are utilized to understand the mutual aerodynamic interaction between each other. The jet flow is studied for a variety of nozzle pressure ratios in combination with an outer flow at sub-, trans-, and supersonic Mach numbers. The flow is examined for two plug lengths, which are 72% and 24% of an ideal contour. It is found that the combination of nozzle pressure ratio and outer Mach number strongly influences the flow pattern and local velocity magnitudes. Backflow regions are measured, mainly emerging through the integration of the nozzle in a bluff aft body. The strength and frequency of aerodynamic modes are found to be highly dependent on the operating conditions as well. The most relevant ones are jet screeching, alternating vortex shedding of the outer flow, and vortex shedding in the base wake of the plug with strong truncation. The latter causes strong fluctuations in the flow, which are transmitted to the shear layer and induce acoustic wave emission. In addition, the flow locally accelerating in the plug base region results in increased shock strength in the jet structure. At trans- and supersonic outer flow, however, the aerodynamic modes of the jet flow are strongly suppressed. The impact of plug truncation on the velocity field becomes less for higher nozzle pressure ratios and outer flow Mach numbers.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 9","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-025-04098-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-025-04098-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A plug/aerospike nozzle is a promising concept as a propulsion system for space launchers and space planes. The inherent ability to adapt the nozzle jet to the ambient pressure level improves the thrust performance under overexpanded operating conditions compared to conventional bell nozzles, which is of great interest for future single-stage-to-orbit vehicles. This experimental study investigates the topology and aerodynamics of a cold flow linear plug nozzle jet in an outer flow environment. PIV and high-speed schlieren measurements are utilized to understand the mutual aerodynamic interaction between each other. The jet flow is studied for a variety of nozzle pressure ratios in combination with an outer flow at sub-, trans-, and supersonic Mach numbers. The flow is examined for two plug lengths, which are 72% and 24% of an ideal contour. It is found that the combination of nozzle pressure ratio and outer Mach number strongly influences the flow pattern and local velocity magnitudes. Backflow regions are measured, mainly emerging through the integration of the nozzle in a bluff aft body. The strength and frequency of aerodynamic modes are found to be highly dependent on the operating conditions as well. The most relevant ones are jet screeching, alternating vortex shedding of the outer flow, and vortex shedding in the base wake of the plug with strong truncation. The latter causes strong fluctuations in the flow, which are transmitted to the shear layer and induce acoustic wave emission. In addition, the flow locally accelerating in the plug base region results in increased shock strength in the jet structure. At trans- and supersonic outer flow, however, the aerodynamic modes of the jet flow are strongly suppressed. The impact of plug truncation on the velocity field becomes less for higher nozzle pressure ratios and outer flow Mach numbers.

线性塞式喷嘴流动与亚、反、超声速外流的相互作用
作为空间发射装置和空间飞机的推进系统,塞式/气动喷管是一个很有前途的概念。与传统的钟形喷嘴相比,喷嘴射流适应环境压力水平的固有能力提高了过膨胀工况下的推力性能,这对未来的单级入轨飞行器具有重要意义。本实验研究了外流环境下冷流线性塞式喷嘴的拓扑结构和空气动力学特性。利用PIV和高速纹影测量来了解彼此之间的气动相互作用。在亚马赫数、跨马赫数和超音速马赫数下,研究了不同喷嘴压力比与外部流动的射流。测试了两种桥塞长度,分别为理想轮廓线的72%和24%。研究发现,喷管压力比和外马赫数的组合对流型和局部速度大小有较大的影响。对回流区域进行了测量,回流区域主要通过在钝型尾体中集成喷嘴出现。气动模式的强度和频率也高度依赖于运行条件。最相关的是射流尖啸、外流交替涡脱落和强截断塞基尾流涡脱落。后者使流动产生强烈的波动,这些波动传递到剪切层并诱发声波发射。此外,在桥塞底部区域,流动的局部加速导致射流结构的冲击强度增加。然而,在跨声速和超声速外流中,射流的气动模式被强烈抑制。当喷管压力比和外流马赫数较高时,塞塞截断对速度场的影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信