Yue Sun, Tianxu Mao, Dan Tu, Shuang Wang, Zhengui Han, Tao Zhang, Genxu Wang
{"title":"Slope-Scale Spatial Variability of Saturated Hydraulic Conductivity and Its Drivers in the Alpine Meadows of the Qinghai-Tibet Plateau","authors":"Yue Sun, Tianxu Mao, Dan Tu, Shuang Wang, Zhengui Han, Tao Zhang, Genxu Wang","doi":"10.1002/hyp.70254","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The spatial distribution of saturated hydraulic conductivity (Ks) is controlled by soil processes at multiple scales, and this spatial variability is crucial to simulating soil moisture movement. Nevertheless, few studies focus on the spatial variability of Ks and how changes through alpine meadow degradation or the specific scales at which the controlling factors function. This study therefore examines the scale-dependent relationships between Ks and several primary driving factors. Soil samples were collected at an interval of 3 m along three transects on a slope in the Qinghai-Tibet Plateau (QTP) and Ks, bulk density (BD), above-ground biomass (AGB), soil organic carbon content (SOC), sand content (SAND), silt content (SILT) and clay content (CLAY) were analysed. Ks showed strong spatial dependency and irregular distribution due to alpine meadow degradation. Pearson correlation analysis revealed a significant correlation between BD, AGB and Ks (<i>p</i> < 0.001). Furthermore, cross-semivariograms showed that Ks exhibited strong spatial correlation with AGB and SAND. Using the state space method, we determined that BD, SOC, AGB and CLAY are the main factors that control the spatial distribution of Ks on the slope. A two-factor state-space equation based on CLAY and BD provides a good representation of Ks, enabling the prediction and estimation of Ks distribution characteristics. These findings enhance our understanding of the crucial parameters that govern hydrological processes at the slope-scale of alpine grassland on the QTP, thereby helping to elucidate permafrost-related hydrological processes related to climate change.</p>\n </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70254","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
The spatial distribution of saturated hydraulic conductivity (Ks) is controlled by soil processes at multiple scales, and this spatial variability is crucial to simulating soil moisture movement. Nevertheless, few studies focus on the spatial variability of Ks and how changes through alpine meadow degradation or the specific scales at which the controlling factors function. This study therefore examines the scale-dependent relationships between Ks and several primary driving factors. Soil samples were collected at an interval of 3 m along three transects on a slope in the Qinghai-Tibet Plateau (QTP) and Ks, bulk density (BD), above-ground biomass (AGB), soil organic carbon content (SOC), sand content (SAND), silt content (SILT) and clay content (CLAY) were analysed. Ks showed strong spatial dependency and irregular distribution due to alpine meadow degradation. Pearson correlation analysis revealed a significant correlation between BD, AGB and Ks (p < 0.001). Furthermore, cross-semivariograms showed that Ks exhibited strong spatial correlation with AGB and SAND. Using the state space method, we determined that BD, SOC, AGB and CLAY are the main factors that control the spatial distribution of Ks on the slope. A two-factor state-space equation based on CLAY and BD provides a good representation of Ks, enabling the prediction and estimation of Ks distribution characteristics. These findings enhance our understanding of the crucial parameters that govern hydrological processes at the slope-scale of alpine grassland on the QTP, thereby helping to elucidate permafrost-related hydrological processes related to climate change.
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.