Impact of Silver Nanoparticle Polydispersity On Plasmonic Effects

IF 4.3 4区 物理与天体物理 Q2 CHEMISTRY, PHYSICAL
Taisia Efimova, Maxim Khombak, Andrei Ramanenka, Pavel Kratovich, Olga Kulakovich
{"title":"Impact of Silver Nanoparticle Polydispersity On Plasmonic Effects","authors":"Taisia Efimova,&nbsp;Maxim Khombak,&nbsp;Andrei Ramanenka,&nbsp;Pavel Kratovich,&nbsp;Olga Kulakovich","doi":"10.1007/s11468-025-03209-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the influence of the degree of polydispersity of silver nanoparticles on plasmon-enhanced photoluminescence (PL) and surface-enhanced Raman scattering (SERS), which is crucial for the development of sensitive sensors. Experimental and theoretical modeling demonstrate the advantages of silver nanoparticles (~ 30 nm) with higher polydispersity and polymorphicity over monodisperse particles in enhancing the photoluminescence of a \"green\" luminophore, as well as SERS and resonance SERS (SERRS) of dyes under green light excitation within the resonance range of individual silver nanoparticles. When red excitation (620 nm and 633 nm) within the plasmon resonance of silver nanoparticle aggregates was used, no significant effect of Ag nanoparticle polydispersity on the enhancement of PL, SERS, or SERRS was observed. These findings highlight the importance of considering metal nanoparticle polydispersity when optimizing sensor systems based on plasmonic enhancement and challenge the conventional prioritization of monodispersity in plasmonic sensor design and offer practical guidelines for optimizing enhancement efficiency.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"20 8","pages":"6213 - 6220"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11468-025-03209-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the influence of the degree of polydispersity of silver nanoparticles on plasmon-enhanced photoluminescence (PL) and surface-enhanced Raman scattering (SERS), which is crucial for the development of sensitive sensors. Experimental and theoretical modeling demonstrate the advantages of silver nanoparticles (~ 30 nm) with higher polydispersity and polymorphicity over monodisperse particles in enhancing the photoluminescence of a "green" luminophore, as well as SERS and resonance SERS (SERRS) of dyes under green light excitation within the resonance range of individual silver nanoparticles. When red excitation (620 nm and 633 nm) within the plasmon resonance of silver nanoparticle aggregates was used, no significant effect of Ag nanoparticle polydispersity on the enhancement of PL, SERS, or SERRS was observed. These findings highlight the importance of considering metal nanoparticle polydispersity when optimizing sensor systems based on plasmonic enhancement and challenge the conventional prioritization of monodispersity in plasmonic sensor design and offer practical guidelines for optimizing enhancement efficiency.

银纳米粒子多分散性对等离子体效应的影响
本研究研究了银纳米粒子的多分散度对等离子体增强光致发光(PL)和表面增强拉曼散射(SERS)的影响,这对灵敏传感器的发展至关重要。实验和理论模型证明了具有更高多分散性和多晶性的银纳米粒子(~ 30 nm)比单分散粒子在增强“绿色”发光团的光致发光方面的优势,以及在单个银纳米粒子的共振范围内,在绿光激发下染料的SERS和共振SERS (SERRS)。当使用银纳米粒子聚集体等离子体共振内的红色激发(620 nm和633 nm)时,没有观察到银纳米粒子的多分散性对PL、SERS和SERRS的增强有显著影响。这些发现强调了在优化基于等离子体增强的传感器系统时考虑金属纳米颗粒多分散性的重要性,挑战了等离子体传感器设计中单分散性的传统优先级,并为优化增强效率提供了实用指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasmonics
Plasmonics 工程技术-材料科学:综合
CiteScore
5.90
自引率
6.70%
发文量
164
审稿时长
2.1 months
期刊介绍: Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons. Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信