NeMCoF: Neural Material Composition Fields for Material Decomposition in Sparse-View Spectral X-ray CT

IF 2.4 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Takumi Hotta, Tatsuya Yatagawa, Yutaka Ohtake, Toru Aoki
{"title":"NeMCoF: Neural Material Composition Fields for Material Decomposition in Sparse-View Spectral X-ray CT","authors":"Takumi Hotta,&nbsp;Tatsuya Yatagawa,&nbsp;Yutaka Ohtake,&nbsp;Toru Aoki","doi":"10.1007/s10921-025-01263-0","DOIUrl":null,"url":null,"abstract":"<div><p>Spectral X-ray computed tomography enables material decomposition by leveraging energy-dependent X-ray attenuation properties. However, material decomposition with spectral CT requires a longer acquisition time to obtain sufficient numbers of photons in each energy bin. Sparse-view offers a practical solution to reduce acquisition time, but it introduces ill-posedness, degrading decomposition accuracy. This study introduces a material decomposition framework based on Neural Radiance Fields where material maps are represented using a multilayer perceptron (MLP). The material maps are then optimized through a spectral forward projection process based on the Lambert–Beer’s law, while a partition of unity (PoU) loss ensures the physical constraint on material maps. Our method was evaluated using simulated and real spectral CT datasets and compared with a traditional statistical approach. The results demonstrated that our method performs well in material decomposition under sparse-view conditions. The results suggest that our “neural material composition fields” framework offers accurate material decomposition robust to sparse-view conditions without requiring labeled training data.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-025-01263-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01263-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Spectral X-ray computed tomography enables material decomposition by leveraging energy-dependent X-ray attenuation properties. However, material decomposition with spectral CT requires a longer acquisition time to obtain sufficient numbers of photons in each energy bin. Sparse-view offers a practical solution to reduce acquisition time, but it introduces ill-posedness, degrading decomposition accuracy. This study introduces a material decomposition framework based on Neural Radiance Fields where material maps are represented using a multilayer perceptron (MLP). The material maps are then optimized through a spectral forward projection process based on the Lambert–Beer’s law, while a partition of unity (PoU) loss ensures the physical constraint on material maps. Our method was evaluated using simulated and real spectral CT datasets and compared with a traditional statistical approach. The results demonstrated that our method performs well in material decomposition under sparse-view conditions. The results suggest that our “neural material composition fields” framework offers accurate material decomposition robust to sparse-view conditions without requiring labeled training data.

NeMCoF:稀疏视域x射线CT材料分解的神经材料组成场
光谱x射线计算机断层扫描通过利用能量依赖的x射线衰减特性实现材料分解。然而,利用光谱CT进行材料分解需要较长的采集时间才能在每个能量仓中获得足够数量的光子。稀疏视图为减少捕获时间提供了实用的解决方案,但它引入了病态性,降低了分解精度。本研究介绍了一个基于神经辐射场的材料分解框架,其中材料映射使用多层感知器(MLP)表示。然后通过基于Lambert-Beer定律的光谱正投影过程对材料图进行优化,而单位分割(PoU)损失确保了对材料图的物理约束。我们的方法通过模拟和真实的频谱CT数据集进行了评估,并与传统的统计方法进行了比较。结果表明,该方法在稀疏视图条件下具有较好的分解效果。结果表明,我们的“神经材料组成场”框架在不需要标记训练数据的情况下,对稀疏视图条件提供了准确的材料分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信