Machine Learning Assisted Method for Automated Impact-Echo Testing of Concrete Structures

IF 2.4 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Sang Min Lee, Jinyoung Hong, Hajin Choi, Thomas H.-K. Kang
{"title":"Machine Learning Assisted Method for Automated Impact-Echo Testing of Concrete Structures","authors":"Sang Min Lee,&nbsp;Jinyoung Hong,&nbsp;Hajin Choi,&nbsp;Thomas H.-K. Kang","doi":"10.1007/s10921-025-01260-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the feasibility of a machine learning model for the automatic classification of impact-echo testing results was investigated. A machine learning model with features such as instantaneous frequency and spectral entropy extracted from time series data was compared with two different approaches, including conventional peak frequency and a deep learning model. To construct a robust and flexible model, an open-source database from two organizations performed by different testing operators and equipment was used to train and develop the universal classifier. The model was evaluated for its ability to classify the type of defects as well as their presence, and the results showed that shallow delamination can be detected more accurately than other types of defects. The proposed machine learning model showed reliable and promising results and has the potential to improve the efficiency of impact-echo testing in concrete structures.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01260-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the feasibility of a machine learning model for the automatic classification of impact-echo testing results was investigated. A machine learning model with features such as instantaneous frequency and spectral entropy extracted from time series data was compared with two different approaches, including conventional peak frequency and a deep learning model. To construct a robust and flexible model, an open-source database from two organizations performed by different testing operators and equipment was used to train and develop the universal classifier. The model was evaluated for its ability to classify the type of defects as well as their presence, and the results showed that shallow delamination can be detected more accurately than other types of defects. The proposed machine learning model showed reliable and promising results and has the potential to improve the efficiency of impact-echo testing in concrete structures.

Abstract Image

Abstract Image

混凝土结构冲击回波自动测试的机器学习辅助方法
本研究探讨了一种机器学习模型用于冲击回波测试结果自动分类的可行性。从时间序列数据中提取瞬时频率和谱熵等特征的机器学习模型,比较了两种不同的方法,包括传统的峰值频率和深度学习模型。为了构建稳健灵活的模型,使用两个组织的开源数据库,由不同的测试操作员和设备执行,以训练和开发通用分类器。该模型对缺陷类型及其存在进行分类的能力进行了评估,结果表明,与其他类型的缺陷相比,浅层分层可以更准确地检测到。提出的机器学习模型显示出可靠和有希望的结果,并有可能提高混凝土结构中冲击回波测试的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信