Muhammad Kamran, Tahir Malik, Ayesha Jamal, Muhammad Fahim Ul Haque, Muhammad Mubashir Khan
{"title":"Coherent detection of discrete variable quantum key distribution using homodyne technique","authors":"Muhammad Kamran, Tahir Malik, Ayesha Jamal, Muhammad Fahim Ul Haque, Muhammad Mubashir Khan","doi":"10.1007/s00340-025-08531-x","DOIUrl":null,"url":null,"abstract":"<div><p>In discrete variable quantum key distribution (DV-QKD), the homodyne detection method is frequently employed for its simplicity in use, effectiveness in terms of error correction, and suitability with contemporary optical communication systems. Being a coherent detection method, it relies on a local oscillator whose frequency is matched to that of the transmitted carrier’s signal. In this paper, we evaluate a free space optical (FSO) DV-QKD system based on the KMB09 protocol using Homodyne detection under random phase fluctuation and depolarizing noise error. We present simulation results for system efficiency and quantum bit error rate (QBER) for the proposed model. An obtained efficiency (<span>\\(25\\%\\)</span>) for our proposed DV-QKD system model shows that under atmospheric turbulence and noise effect and it is in line with the available analytical results. However, the inclusion of random phase fluctuation and noise led to higher-than-normal QBER which is anticipated in a real-world scenario.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"131 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-025-08531-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In discrete variable quantum key distribution (DV-QKD), the homodyne detection method is frequently employed for its simplicity in use, effectiveness in terms of error correction, and suitability with contemporary optical communication systems. Being a coherent detection method, it relies on a local oscillator whose frequency is matched to that of the transmitted carrier’s signal. In this paper, we evaluate a free space optical (FSO) DV-QKD system based on the KMB09 protocol using Homodyne detection under random phase fluctuation and depolarizing noise error. We present simulation results for system efficiency and quantum bit error rate (QBER) for the proposed model. An obtained efficiency (\(25\%\)) for our proposed DV-QKD system model shows that under atmospheric turbulence and noise effect and it is in line with the available analytical results. However, the inclusion of random phase fluctuation and noise led to higher-than-normal QBER which is anticipated in a real-world scenario.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.