Anomalous Symmetries of Quantum Spin Chains and a Generalization of the Lieb–Schultz–Mattis Theorem

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Anton Kapustin, Nikita Sopenko
{"title":"Anomalous Symmetries of Quantum Spin Chains and a Generalization of the Lieb–Schultz–Mattis Theorem","authors":"Anton Kapustin,&nbsp;Nikita Sopenko","doi":"10.1007/s00220-025-05422-2","DOIUrl":null,"url":null,"abstract":"<div><p>For any locality-preserving action of a group <i>G</i> on a quantum spin chain one can define an anomaly index taking values in the group cohomology of <i>G</i>. The anomaly index is a kinematic quantity, it does not depend on the Hamiltonian. We prove that a nonzero anomaly index prohibits any <i>G</i>-invariant Hamiltonian from having <i>G</i>-invariant gapped ground states. Lieb–Schultz–Mattis-type theorems are a special case of this result when <i>G</i> involves translations. In the case when the symmetry group <i>G</i> is a Lie group, we define an anomaly index which takes values in the differentiable group cohomology as defined by J.-L. Brylinski and prove a similar result.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05422-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For any locality-preserving action of a group G on a quantum spin chain one can define an anomaly index taking values in the group cohomology of G. The anomaly index is a kinematic quantity, it does not depend on the Hamiltonian. We prove that a nonzero anomaly index prohibits any G-invariant Hamiltonian from having G-invariant gapped ground states. Lieb–Schultz–Mattis-type theorems are a special case of this result when G involves translations. In the case when the symmetry group G is a Lie group, we define an anomaly index which takes values in the differentiable group cohomology as defined by J.-L. Brylinski and prove a similar result.

量子自旋链的反常对称性及利布-舒尔茨-马蒂斯定理的推广
对于群G在量子自旋链上的任何保位作用,可以定义一个异常指标,其值取G的群上同调。异常指标是一个运动量,它不依赖于哈密顿量。我们证明了一个非零异常指标禁止任何g不变哈密顿量具有g不变间隙基态。当G涉及平移时,利布-舒尔茨-马蒂斯型定理是这个结果的一个特例。在对称群G是李群的情况下,我们定义了一个异常指标,其取值在j - l定义的可微群上同调中。Brylinski和证明了一个类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信