SDEs with Supercritical Distributional Drifts

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Zimo Hao, Xicheng Zhang
{"title":"SDEs with Supercritical Distributional Drifts","authors":"Zimo Hao,&nbsp;Xicheng Zhang","doi":"10.1007/s00220-025-05430-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(d\\geqslant 2\\)</span>. In this paper, we investigate the following stochastic differential equation (SDE) in <span>\\({{\\mathbb {R}}}^d\\)</span> driven by Brownian motion </p><div><div><span>$$ \\textrm{d} X_t=b(t,X_t)\\textrm{d} t+\\sqrt{2}\\textrm{d} W_t, $$</span></div></div><p>where <i>b</i> belongs to the space <span>\\({{\\mathbb {L}}}_T^q \\textbf{H}_p^\\alpha \\)</span> with <span>\\(\\alpha \\in [-1, 0]\\)</span> and <span>\\(p,q\\in [2, \\infty ]\\)</span>, which is a distribution-valued and divergence-free vector field. In the subcritical case <span>\\(\\frac{d}{p}+\\frac{2}{q}&lt;1+\\alpha \\)</span>, we establish the existence and uniqueness of a weak solution to the integral equation: </p><div><div><span>$$ X_t=X_0+\\lim _{n\\rightarrow \\infty }\\int ^t_0b_n(s,X_s)\\textrm{d} s+\\sqrt{2} W_t. $$</span></div></div><p>Here, <span>\\(b_n:=b*\\phi _n\\)</span> represents the mollifying approximation, and the limit is taken in the <span>\\(L^2\\)</span>-sense. In the critical and supercritical case <span>\\(1+\\alpha \\leqslant \\frac{d}{p}+\\frac{2}{q}&lt;2+\\alpha \\)</span>, assuming the initial distribution has an <span>\\(L^2\\)</span>-density, we show the existence of weak solutions and associated Markov processes. Moreover, under the additional assumption that <span>\\(b=b_1+b_2+\\mathord {\\textrm{div}}a\\)</span>, where <span>\\(b_1\\in {{\\mathbb {L}}}^\\infty _T{{\\textbf{B}}}^{-1}_{\\infty ,2}\\)</span>, <span>\\(b_2\\in {{\\mathbb {L}}}^2_TL^2\\)</span>, and <i>a</i> is a bounded antisymmetric matrix-valued function, we establish the convergence of mollifying approximation solutions without the need to subtract a subsequence. To illustrate our results, we provide examples of Gaussian random fields and singular interacting particle systems, including the two-dimensional vortex models.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05430-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(d\geqslant 2\). In this paper, we investigate the following stochastic differential equation (SDE) in \({{\mathbb {R}}}^d\) driven by Brownian motion

$$ \textrm{d} X_t=b(t,X_t)\textrm{d} t+\sqrt{2}\textrm{d} W_t, $$

where b belongs to the space \({{\mathbb {L}}}_T^q \textbf{H}_p^\alpha \) with \(\alpha \in [-1, 0]\) and \(p,q\in [2, \infty ]\), which is a distribution-valued and divergence-free vector field. In the subcritical case \(\frac{d}{p}+\frac{2}{q}<1+\alpha \), we establish the existence and uniqueness of a weak solution to the integral equation:

$$ X_t=X_0+\lim _{n\rightarrow \infty }\int ^t_0b_n(s,X_s)\textrm{d} s+\sqrt{2} W_t. $$

Here, \(b_n:=b*\phi _n\) represents the mollifying approximation, and the limit is taken in the \(L^2\)-sense. In the critical and supercritical case \(1+\alpha \leqslant \frac{d}{p}+\frac{2}{q}<2+\alpha \), assuming the initial distribution has an \(L^2\)-density, we show the existence of weak solutions and associated Markov processes. Moreover, under the additional assumption that \(b=b_1+b_2+\mathord {\textrm{div}}a\), where \(b_1\in {{\mathbb {L}}}^\infty _T{{\textbf{B}}}^{-1}_{\infty ,2}\), \(b_2\in {{\mathbb {L}}}^2_TL^2\), and a is a bounded antisymmetric matrix-valued function, we establish the convergence of mollifying approximation solutions without the need to subtract a subsequence. To illustrate our results, we provide examples of Gaussian random fields and singular interacting particle systems, including the two-dimensional vortex models.

具有超临界分布漂移的SDEs
让\(d\geqslant 2\)。本文研究了在布朗运动$$ \textrm{d} X_t=b(t,X_t)\textrm{d} t+\sqrt{2}\textrm{d} W_t, $$驱动下的\({{\mathbb {R}}}^d\)随机微分方程(SDE),其中b属于含有\(\alpha \in [-1, 0]\)和\(p,q\in [2, \infty ]\)的空间\({{\mathbb {L}}}_T^q \textbf{H}_p^\alpha \),它是一个无散度的分布值向量场。在次临界情况\(\frac{d}{p}+\frac{2}{q}<1+\alpha \)下,我们建立了积分方程弱解的存在唯一性:$$ X_t=X_0+\lim _{n\rightarrow \infty }\int ^t_0b_n(s,X_s)\textrm{d} s+\sqrt{2} W_t. $$这里,\(b_n:=b*\phi _n\)表示缓和近似,极限取\(L^2\) -意义。在临界和超临界情况下\(1+\alpha \leqslant \frac{d}{p}+\frac{2}{q}<2+\alpha \),假设初始分布具有\(L^2\) -密度,我们证明了弱解和相关马尔可夫过程的存在性。此外,在\(b=b_1+b_2+\mathord {\textrm{div}}a\)的附加假设下,其中\(b_1\in {{\mathbb {L}}}^\infty _T{{\textbf{B}}}^{-1}_{\infty ,2}\), \(b_2\in {{\mathbb {L}}}^2_TL^2\)和a是一个有界的反对称矩阵值函数,我们建立了缓和逼近解的收敛性,而不需要减去子序列。为了说明我们的结果,我们提供了高斯随机场和奇异相互作用粒子系统的例子,包括二维涡旋模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信