A Localized Construction of Kasner-like Singularities

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Nikolaos Athanasiou, Grigorios Fournodavlos
{"title":"A Localized Construction of Kasner-like Singularities","authors":"Nikolaos Athanasiou,&nbsp;Grigorios Fournodavlos","doi":"10.1007/s00220-025-05437-9","DOIUrl":null,"url":null,"abstract":"<div><p>We construct local, in spacetime, singular solutions to the Einstein vacuum equations that exhibit Kasner-like behavior in their past boundary. Our result can be viewed as a localization (in space) of the construction in [18]. We also prove a refined uniqueness statement and give a simple argument that generates general asymptotic data for Kasner-like singularities, enjoying all expected degrees of freedom, albeit only locally in space. The key difference of the present work with [18] is our use of a first order symmetric hyperbolic formulation of the Einstein vacuum equations, relative to the connection coefficients of a parallelly propagated orthonormal frame which is adapted to the Gaussian time foliation. This makes it easier to localize the construction, since elliptic estimates are no longer required to complete the energy argument.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05437-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We construct local, in spacetime, singular solutions to the Einstein vacuum equations that exhibit Kasner-like behavior in their past boundary. Our result can be viewed as a localization (in space) of the construction in [18]. We also prove a refined uniqueness statement and give a simple argument that generates general asymptotic data for Kasner-like singularities, enjoying all expected degrees of freedom, albeit only locally in space. The key difference of the present work with [18] is our use of a first order symmetric hyperbolic formulation of the Einstein vacuum equations, relative to the connection coefficients of a parallelly propagated orthonormal frame which is adapted to the Gaussian time foliation. This makes it easier to localize the construction, since elliptic estimates are no longer required to complete the energy argument.

类kasner奇点的局域构造
我们在时空中构造爱因斯坦真空方程的局部奇异解,这些解在过去的边界上表现出类似卡斯纳的行为。我们的结果可以看作是[18]结构的(空间)定位。我们还证明了一个精炼的唯一性陈述,并给出了一个简单的论点,生成了kasner -类奇点的一般渐近数据,尽管仅在局部空间中享有所有期望的自由度。本工作与[18]的关键区别在于我们使用了爱因斯坦真空方程的一阶对称双曲公式,相对于适用于高斯时间叶分的平行传播标准正交坐标系的连接系数。这使得定位构造变得更容易,因为不再需要椭圆估计来完成能量论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信