Effective Dynamics of Local Observables for Extended Fermi Gases in the High-Density Regime

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Luca Fresta, Marcello Porta, Benjamin Schlein
{"title":"Effective Dynamics of Local Observables for Extended Fermi Gases in the High-Density Regime","authors":"Luca Fresta,&nbsp;Marcello Porta,&nbsp;Benjamin Schlein","doi":"10.1007/s00220-025-05393-4","DOIUrl":null,"url":null,"abstract":"<div><p>We give a rigorous derivation of the Hartree equation for the many-body dynamics of pseudo-relativistic Fermi systems at high density <span>\\(\\varrho \\gg 1\\)</span>, on arbitrarily large domains, at zero temperature. With respect to previous works, we show that the many-body evolution can be approximated by the Hartree dynamics locally, proving convergence of the expectation of observables that are supported in regions with fixed volume, independent of <span>\\(\\varrho \\)</span>. The result applies to initial data describing fermionic systems at equilibrium confined in arbitrarily large domains, under the assumption that a suitable local Weyl-type estimate holds true. The proof relies on the approximation of the initial data through positive temperature quasi-free states, that satisfy strong local semiclassical bounds, which play a key role in controlling the growth of the local excitations of the quasi-free state along the many-body dynamics.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05393-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05393-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We give a rigorous derivation of the Hartree equation for the many-body dynamics of pseudo-relativistic Fermi systems at high density \(\varrho \gg 1\), on arbitrarily large domains, at zero temperature. With respect to previous works, we show that the many-body evolution can be approximated by the Hartree dynamics locally, proving convergence of the expectation of observables that are supported in regions with fixed volume, independent of \(\varrho \). The result applies to initial data describing fermionic systems at equilibrium confined in arbitrarily large domains, under the assumption that a suitable local Weyl-type estimate holds true. The proof relies on the approximation of the initial data through positive temperature quasi-free states, that satisfy strong local semiclassical bounds, which play a key role in controlling the growth of the local excitations of the quasi-free state along the many-body dynamics.

高密度区扩展费米气体局部可观测值的有效动力学
我们给出了伪相对论费米系统在高密度\(\varrho \gg 1\),任意大域,零温度下的多体动力学的Hartree方程的严格推导。关于以前的工作,我们表明,多体演化可以由局部的Hartree动力学近似,证明了在固定体积的区域中支持的可观测值的期望的收敛性,独立于\(\varrho \)。该结果适用于描述费米子系统在任意大域中处于平衡状态的初始数据,假设一个合适的局部weyl型估计成立。该证明依赖于通过满足强局部半经典边界的正温度准自由态对初始数据的逼近,这对于控制准自由态沿多体动力学的局部激励的增长起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信