Extreme Value Theory and Poisson Statistics for Discrete Time Samplings of Stochastic Differential Equations

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
F. Flandoli, S. Galatolo, P. Giulietti, S. Vaienti
{"title":"Extreme Value Theory and Poisson Statistics for Discrete Time Samplings of Stochastic Differential Equations","authors":"F. Flandoli,&nbsp;S. Galatolo,&nbsp;P. Giulietti,&nbsp;S. Vaienti","doi":"10.1007/s00220-025-05385-4","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the distribution and clustering of extreme events of stochastic processes constructed by sampling the solution of a Stochastic Differential Equation on <span>\\({\\mathbb {R}}^n\\)</span>. We do so by studying the action of an annealed transfer operators on suitable spaces of densities. The spectral properties of such operators are obtained by employing a mixture of techniques coming from SDE theory and a functional analytic approach to dynamical systems.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05385-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05385-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the distribution and clustering of extreme events of stochastic processes constructed by sampling the solution of a Stochastic Differential Equation on \({\mathbb {R}}^n\). We do so by studying the action of an annealed transfer operators on suitable spaces of densities. The spectral properties of such operators are obtained by employing a mixture of techniques coming from SDE theory and a functional analytic approach to dynamical systems.

随机微分方程离散时间抽样的极值理论和泊松统计
本文研究了在\({\mathbb {R}}^n\)上对随机微分方程的解进行抽样构造的随机过程的极端事件的分布和聚类。我们通过研究退火传递算符在合适密度空间上的作用来做到这一点。这些算符的谱性质是通过采用来自SDE理论和动力系统泛函分析方法的混合技术获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信