Phase Transition for Discrete Nonlinear Schrödinger Equation in Three and Higher Dimensions

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Partha S. Dey, Kay Kirkpatrick, Kesav Krishnan
{"title":"Phase Transition for Discrete Nonlinear Schrödinger Equation in Three and Higher Dimensions","authors":"Partha S. Dey,&nbsp;Kay Kirkpatrick,&nbsp;Kesav Krishnan","doi":"10.1007/s00220-025-05408-0","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze the thermodynamics of the focusing discrete nonlinear Schrödinger equation in dimensions <span>\\(d\\geqslant 3\\)</span> with general power nonlinearity <span>\\(p&gt;1\\)</span>, under a model with two parameters that are inverse temperature and the nonlinearity strength. We prove the existence of the limiting free energy of the associated invariant Gibbs measure and analyze the phase diagram for general <i>d</i>, <i>p</i>. We prove the existence of a continuous phase transition curve that divides the parametric plane into two regions involving the appearance or non-appearance of solitons. Appropriate upper and lower bounds for the curve are constructed that match the result in Chatterjee and Kirkpatrick (Commun Pure Appl Math 65(5):727–757, 2012) a one-sided asymptotic limit. We also look at the typical behavior of a function from the Gibbs measure for parts of the phase diagram.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05408-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the thermodynamics of the focusing discrete nonlinear Schrödinger equation in dimensions \(d\geqslant 3\) with general power nonlinearity \(p>1\), under a model with two parameters that are inverse temperature and the nonlinearity strength. We prove the existence of the limiting free energy of the associated invariant Gibbs measure and analyze the phase diagram for general dp. We prove the existence of a continuous phase transition curve that divides the parametric plane into two regions involving the appearance or non-appearance of solitons. Appropriate upper and lower bounds for the curve are constructed that match the result in Chatterjee and Kirkpatrick (Commun Pure Appl Math 65(5):727–757, 2012) a one-sided asymptotic limit. We also look at the typical behavior of a function from the Gibbs measure for parts of the phase diagram.

三维及高维离散非线性Schrödinger方程的相变
在具有逆温度和非线性强度两个参数的模型下,分析了具有一般幂非线性\(p>1\)的一维\(d\geqslant 3\)聚焦离散非线性Schrödinger方程的热力学。证明了相关不变Gibbs测度的极限自由能的存在性,并分析了一般d, p的相图。证明了将参数平面划分为两个涉及孤子出现或不出现的区域的连续相变曲线的存在性。构造了与Chatterjee和Kirkpatrick (common Pure applied Math 65(5): 727-757, 2012)的单侧渐近极限结果相匹配的曲线的适当上界和下界。我们也从相图的吉布斯测度来看函数的典型行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信