Anosov Vector Fields and Fried Sections

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jean-Michel Bismut, Shu Shen
{"title":"Anosov Vector Fields and Fried Sections","authors":"Jean-Michel Bismut,&nbsp;Shu Shen","doi":"10.1007/s00220-025-05400-8","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this paper is to prove that if <i>Y</i> is a compact manifold, if <i>Z</i> is an Anosov vector field on <i>Y</i>, and if <i>F</i> is a flat vector bundle, there is a corresponding canonical nonzero section <span>\\(\\tau _{\\nu }\\left( i_{Z}\\right) \\)</span> of the determinant line <span>\\(\\nu =\\det H\\left( Y,F\\right) \\)</span>. In families, this section is <span>\\(C^{1}\\)</span> with respect to the canonical smooth structure on <span>\\(\\nu \\)</span>. When <i>F</i> is flat on the total space of the corresponding fibration, our section is flat with respect to the Gauss-Manin connection on <span>\\(\\nu \\)</span>.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05400-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05400-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to prove that if Y is a compact manifold, if Z is an Anosov vector field on Y, and if F is a flat vector bundle, there is a corresponding canonical nonzero section \(\tau _{\nu }\left( i_{Z}\right) \) of the determinant line \(\nu =\det H\left( Y,F\right) \). In families, this section is \(C^{1}\) with respect to the canonical smooth structure on \(\nu \). When F is flat on the total space of the corresponding fibration, our section is flat with respect to the Gauss-Manin connection on \(\nu \).

阿诺索夫矢量场和油炸截面
本文的目的是证明如果Y是紧流形,如果Z是Y上的一个Anosov向量场,如果F是一个平坦向量束,则行列式线\(\nu =\det H\left( Y,F\right) \)存在一个相应的正则非零截面\(\tau _{\nu }\left( i_{Z}\right) \)。在家庭中,这一节是\(C^{1}\)关于\(\nu \)上的规范平滑结构。当F在相应的纤维的总空间上是平坦的,我们的截面相对于\(\nu \)上的高斯-马宁连接是平坦的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信