Synergistic immobilization of complex TRPO-CS nuclear waste by natural mineral materials: Glass and CsAlSiO4 dominant glass-ceramics

IF 5.6 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Wenhong Han , Xiaoyan Shu , Ran Tan , Yuxuan He , Shunzhang Chen , Guilin Wei , Xirui Lu
{"title":"Synergistic immobilization of complex TRPO-CS nuclear waste by natural mineral materials: Glass and CsAlSiO4 dominant glass-ceramics","authors":"Wenhong Han ,&nbsp;Xiaoyan Shu ,&nbsp;Ran Tan ,&nbsp;Yuxuan He ,&nbsp;Shunzhang Chen ,&nbsp;Guilin Wei ,&nbsp;Xirui Lu","doi":"10.1016/j.ceramint.2025.06.272","DOIUrl":null,"url":null,"abstract":"<div><div><span><span>This study presents a nature-inspired approach for innovatively immobilizing complex TRPO-CS waste (containing Cs, </span>Sr<span><span>, and Ba) using natural hornblende granulite, leveraging its unique dual-phase formation capability for sustainable </span>nuclear waste disposal. Through comprehensive characterization of mass loss behavior, phase evolution, microstructure, elemental distribution, and glass-ceramic transformation, demonstrated that granite can achieve dual phase stable solidification of complex TRPO-CS waste: glass (0-20 </span></span><em>wt</em>%) and CsAlSiO<sub>4</sub> dominant glass-ceramics (30-60 <em>wt</em>%). The formation of the CsAlSiO<sub>4</sub><span><span> ceramic phase significantly enhances the immobilization of Cs and Sr while reducing mass loss (with minimum values of ∼6 % for Cs and ∼0.3 % for Sr, respectively). The solidification demonstrates exceptional </span>mechanical stability (density: 3.20 g/cm</span><sup>3</sup><span>; Vickers hardness: 8.58 GPa) and chemical durability (leaching rates: ∼10</span><sup>−4</sup> g/m<sup>2</sup><span><span>·d for Cs, Sr and Ba after 28 d). This study establishes natural granite as a highly stable matrix for immobilizing complex volatile TRPO-CS waste for the first time, providing a reliable solution for challenging low melting point </span>radioactive waste streams.</span></div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"51 23","pages":"Pages 40367-40378"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884225029554","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a nature-inspired approach for innovatively immobilizing complex TRPO-CS waste (containing Cs, Sr, and Ba) using natural hornblende granulite, leveraging its unique dual-phase formation capability for sustainable nuclear waste disposal. Through comprehensive characterization of mass loss behavior, phase evolution, microstructure, elemental distribution, and glass-ceramic transformation, demonstrated that granite can achieve dual phase stable solidification of complex TRPO-CS waste: glass (0-20 wt%) and CsAlSiO4 dominant glass-ceramics (30-60 wt%). The formation of the CsAlSiO4 ceramic phase significantly enhances the immobilization of Cs and Sr while reducing mass loss (with minimum values of ∼6 % for Cs and ∼0.3 % for Sr, respectively). The solidification demonstrates exceptional mechanical stability (density: 3.20 g/cm3; Vickers hardness: 8.58 GPa) and chemical durability (leaching rates: ∼10−4 g/m2·d for Cs, Sr and Ba after 28 d). This study establishes natural granite as a highly stable matrix for immobilizing complex volatile TRPO-CS waste for the first time, providing a reliable solution for challenging low melting point radioactive waste streams.

Abstract Image

天然矿物材料协同固定化复合TRPO-CS核废料:玻璃和CsAlSiO4为主的玻璃陶瓷
本研究提出了一种受自然启发的方法,利用天然角闪石麻粒岩创新地固定化复杂的TRPO-CS废物(含Cs, Sr和Ba),利用其独特的双相形成能力进行可持续的核废料处理。通过对质量损失行为、相演化、微观结构、元素分布和玻璃-陶瓷相变的综合表征,证明花岗岩可以实现复合TRPO-CS废弃物的双相稳定凝固:玻璃(0-20 wt%)和CsAlSiO4主导的玻璃-陶瓷(30-60 wt%)。CsAlSiO4陶瓷相的形成显著增强了Cs和Sr的固定化,同时减少了质量损失(Cs和Sr的最小值分别为~ 6%和~ 0.3%)。凝固表现出优异的机械稳定性(密度:3.20 g/cm3;维氏硬度:8.58 GPa)和化学耐久性(28 d后Cs、Sr和Ba的浸出率:~ 10−4 g/m2·d)。本研究首次建立了天然花岗岩作为固定复杂挥发性TRPO-CS废物的高稳定基质,为具有挑战性的低熔点放射性废物流提供了可靠的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ceramics International
Ceramics International 工程技术-材料科学:硅酸盐
CiteScore
9.40
自引率
15.40%
发文量
4558
审稿时长
25 days
期刊介绍: Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties. Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour. Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信