Tuning structure and CMAS corrosion behavior in high-entropy RE disilicate via average RE3+ ionic radius

IF 7.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhiguo Jiao , Guozheng Xiao , Chao Wang , Xinhui Li , Feng Liu , Shiying Liu , Fan Zhang , Zhanjie Wang
{"title":"Tuning structure and CMAS corrosion behavior in high-entropy RE disilicate via average RE3+ ionic radius","authors":"Zhiguo Jiao ,&nbsp;Guozheng Xiao ,&nbsp;Chao Wang ,&nbsp;Xinhui Li ,&nbsp;Feng Liu ,&nbsp;Shiying Liu ,&nbsp;Fan Zhang ,&nbsp;Zhanjie Wang","doi":"10.1016/j.corsci.2025.113280","DOIUrl":null,"url":null,"abstract":"<div><div>This study employed the average RE<sup>3+</sup> ionic radius as a key design parameter to simultaneously tailor the microstructure and CMAS corrosion behavior of high-entropy RE disilicates (Gd<sub>x1</sub>Y<sub>x2</sub>Er<sub>x3</sub>Yb<sub>x4</sub>Lu<sub>x5</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> (x1 + x2 + x3 + x4 + x5 = 1, (5RE<sub>xi</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>) as environmental barrier coating (EBC) materials. Precise tuning of the average RE<sup>3+</sup> ionic radius directly can govern the phase component and lattice distortion. Increasing the average ionic radius can induce a β→γ→δ phase transformation in high-entropy RE disilicates, with critical transition radii at the β/γ and γ/δ phase boundaries of 0.886 and 0.9 Å, respectively, while simultaneously reducing lattice distortion. All (5RE<sub>xi</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> compositions exhibited superior CMAS corrosion resistance at 1300 °C. This resistance stems from a dense cyclosilicate barrier layer formed at the corrosion front via a reaction-precipitation mechanism, effectively suppressing CMAS attack. The efficacy of barrier layer formation is intrinsically linked to the radius-controlled microstructures, including phase stability, RE-O bond length, and lattice distortion. However, at ultrahigh-temperature of 1500 °C, CMAS corrosion involved both grain boundary corrosion and grain dissolution. The dominant corrosion mode shifted gradually from grain boundary corrosion to grain dissolution as the average RE<sup>3+</sup> ionic radius increased. Thus, the average RE<sup>3+</sup> ionic radius served as a fundamental descriptor linking microstructure to CMAS corrosion behavior. These findings establish a vital theoretical framework for designing the composition of high-entropy RE disilicates as next-generation EBC materials.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"257 ","pages":"Article 113280"},"PeriodicalIF":7.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25006079","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study employed the average RE3+ ionic radius as a key design parameter to simultaneously tailor the microstructure and CMAS corrosion behavior of high-entropy RE disilicates (Gdx1Yx2Erx3Ybx4Lux5)2Si2O7 (x1 + x2 + x3 + x4 + x5 = 1, (5RExi)2Si2O7) as environmental barrier coating (EBC) materials. Precise tuning of the average RE3+ ionic radius directly can govern the phase component and lattice distortion. Increasing the average ionic radius can induce a β→γ→δ phase transformation in high-entropy RE disilicates, with critical transition radii at the β/γ and γ/δ phase boundaries of 0.886 and 0.9 Å, respectively, while simultaneously reducing lattice distortion. All (5RExi)2Si2O7 compositions exhibited superior CMAS corrosion resistance at 1300 °C. This resistance stems from a dense cyclosilicate barrier layer formed at the corrosion front via a reaction-precipitation mechanism, effectively suppressing CMAS attack. The efficacy of barrier layer formation is intrinsically linked to the radius-controlled microstructures, including phase stability, RE-O bond length, and lattice distortion. However, at ultrahigh-temperature of 1500 °C, CMAS corrosion involved both grain boundary corrosion and grain dissolution. The dominant corrosion mode shifted gradually from grain boundary corrosion to grain dissolution as the average RE3+ ionic radius increased. Thus, the average RE3+ ionic radius served as a fundamental descriptor linking microstructure to CMAS corrosion behavior. These findings establish a vital theoretical framework for designing the composition of high-entropy RE disilicates as next-generation EBC materials.
基于平均RE3+离子半径的高熵RE二硅酸盐的调谐结构和CMAS腐蚀行为
本研究采用平均RE3 +离子半径作为关键设计参数同时裁缝熵的微观结构和CMAS腐蚀行为再保险二矽酸盐(Gdx1Yx2Erx3Ybx4Lux5) 2 si2o7 (x1 + x2 + x3 + x4 + x5 = 1,(5 rexi) 2 si2o7)环境障碍涂层(EBC)材料。精确调整RE3+离子平均半径可以直接控制相成分和晶格畸变。增大平均离子半径可诱导高熵稀土相发生β→γ→δ相变,β/γ和γ/δ相边界的临界转变半径分别为0.886和0.9 Å,同时降低了晶格畸变。所有(5RExi)2Si2O7成分在1300°C时均表现出优异的CMAS耐腐蚀性。这种阻力源于通过反应沉淀机制在腐蚀前沿形成的致密环硅酸盐屏障层,有效地抑制了CMAS的攻击。势垒层形成的有效性与半径控制的微观结构有内在联系,包括相稳定性、RE-O键长度和晶格畸变。然而,在1500℃的超高温下,CMAS腐蚀既包括晶界腐蚀,也包括晶粒溶解。随着RE3+平均离子半径的增大,主要腐蚀方式由晶界腐蚀逐渐向晶粒溶解转变。因此,平均RE3+离子半径是连接微观结构和CMAS腐蚀行为的基本描述子。这些发现为设计作为下一代EBC材料的高熵稀土硅酸盐组分建立了重要的理论框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Corrosion Science
Corrosion Science 工程技术-材料科学:综合
CiteScore
13.60
自引率
18.10%
发文量
763
审稿时长
46 days
期刊介绍: Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies. This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信