Global daily 1 km gapless XCO₂ (2003−2023) derived from multi-satellite observations and a spatiotemporal deep learning framework

IF 11.2 1区 社会学 Q1 ENVIRONMENTAL STUDIES
Jiawei Wang
{"title":"Global daily 1 km gapless XCO₂ (2003−2023) derived from multi-satellite observations and a spatiotemporal deep learning framework","authors":"Jiawei Wang","doi":"10.1016/j.eiar.2025.108146","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, atmospheric CO₂ concentrations have continued to rise, driving global warming and precipitating severe environmental and ecological crises. Spatiotemporal monitoring of column-averaged dry-air mole fractions of CO₂ (XCO₂) from satellite observations is indispensable for quantifying carbon sources and sinks, evaluating mitigation efforts, and elucidating the global carbon cycle. However, existing satellite XCO₂ products are severely limited by narrow swaths, adverse meteorological interference, and inconsistent spatiotemporal coverage across different platforms, resulting in sparse retrievals with substantial gaps. This study developed a spatiotemporal deep learning framework that couples ConvLSTM temporal modules with a U-Net spatial backbone, enhanced by residual connections and channel- and spatial-attention blocks. Using the column-averaged dry-air mole fraction of XCO<sub>2</sub> data of SCIAMACHY, GOSAT, and OCO-2, we derived the first gapless, daily global terrestrial XCO₂ dataset at 1 km resolution spanning 2003–2023. The results showed outstanding performance under three cross-validation strategies—sample-based, grid-based (spatial), and daily-based (temporal)—with R<sup>2</sup> = 0.996/0.963/0.952, RMSE = 0.46/0.62/0.73 ppm, and MAPE = 0.085 %/ 0.096 %/ 0.101 %, respectively. Moreover, independent validation against in situ TCCON measurements also confirms excellent agreement (R<sup>2</sup> = 0.988, RMSE = 1.10 ppm, MAPE = 0.216 %). Compared to previous efforts, this framework delivers significant improvements in both spatiotemporal resolution and predictive accuracy. The resulting full-coverage estimates reveal a global terrestrial XCO₂ increase of 2.22 ppm yr<sup>−1</sup> over the study period, with markedly larger seasonal amplitudes in the Northern Hemisphere. The high spatiotemporal fidelity captures rapid, fine-scale XCO₂ fluctuations—such as urban–suburban gradients and diurnal evolutions—that remain unresolved by previous coarser datasets. This seamless and high-quality dataset will provide a robust foundation for future global and regional “dual‑carbon” policy implementation and climate-change research. The dataset can be freely accessed at <span><span>https://doi.org/10.11888/Atmos.tpdc.302399</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":309,"journal":{"name":"Environmental Impact Assessment Review","volume":"117 ","pages":"Article 108146"},"PeriodicalIF":11.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Impact Assessment Review","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195925525003439","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, atmospheric CO₂ concentrations have continued to rise, driving global warming and precipitating severe environmental and ecological crises. Spatiotemporal monitoring of column-averaged dry-air mole fractions of CO₂ (XCO₂) from satellite observations is indispensable for quantifying carbon sources and sinks, evaluating mitigation efforts, and elucidating the global carbon cycle. However, existing satellite XCO₂ products are severely limited by narrow swaths, adverse meteorological interference, and inconsistent spatiotemporal coverage across different platforms, resulting in sparse retrievals with substantial gaps. This study developed a spatiotemporal deep learning framework that couples ConvLSTM temporal modules with a U-Net spatial backbone, enhanced by residual connections and channel- and spatial-attention blocks. Using the column-averaged dry-air mole fraction of XCO2 data of SCIAMACHY, GOSAT, and OCO-2, we derived the first gapless, daily global terrestrial XCO₂ dataset at 1 km resolution spanning 2003–2023. The results showed outstanding performance under three cross-validation strategies—sample-based, grid-based (spatial), and daily-based (temporal)—with R2 = 0.996/0.963/0.952, RMSE = 0.46/0.62/0.73 ppm, and MAPE = 0.085 %/ 0.096 %/ 0.101 %, respectively. Moreover, independent validation against in situ TCCON measurements also confirms excellent agreement (R2 = 0.988, RMSE = 1.10 ppm, MAPE = 0.216 %). Compared to previous efforts, this framework delivers significant improvements in both spatiotemporal resolution and predictive accuracy. The resulting full-coverage estimates reveal a global terrestrial XCO₂ increase of 2.22 ppm yr−1 over the study period, with markedly larger seasonal amplitudes in the Northern Hemisphere. The high spatiotemporal fidelity captures rapid, fine-scale XCO₂ fluctuations—such as urban–suburban gradients and diurnal evolutions—that remain unresolved by previous coarser datasets. This seamless and high-quality dataset will provide a robust foundation for future global and regional “dual‑carbon” policy implementation and climate-change research. The dataset can be freely accessed at https://doi.org/10.11888/Atmos.tpdc.302399.
基于多卫星观测和时空深度学习框架的全球每日1公里无间隙XCO₂(2003 - 2023)
近年来,大气CO 2浓度持续上升,导致全球变暖,并引发严重的环境和生态危机。从卫星观测中监测柱平均干空气中co2摩尔分数(XCO₂)的时空变化,对于量化碳源和碳汇、评估减缓努力和阐明全球碳循环是不可或缺的。然而,现有的卫星XCO₂产品受到窄带、不利的气象干扰和不同平台间不一致的时空覆盖的严重限制,导致检索稀疏且存在较大差距。本研究开发了一个时空深度学习框架,该框架将ConvLSTM时间模块与U-Net空间骨干相结合,并通过剩余连接和通道和空间注意块进行增强。利用SCIAMACHY、GOSAT和OCO-2的柱平均干空气XCO2摩尔分数数据,我们获得了2003-2023年1 km分辨率的第一个无间隙、每日全球陆地XCO2数据集。结果表明,基于样本的交叉验证策略、基于网格的交叉验证策略(空间)和基于日的交叉验证策略(时间)的交叉验证策略均表现优异,R2 = 0.996/0.963/0.952, RMSE = 0.46/0.62/0.73 ppm, MAPE = 0.085% / 0.096% / 0.101%。此外,针对原位TCCON测量的独立验证也证实了极好的一致性(R2 = 0.988, RMSE = 1.10 ppm, MAPE = 0.216%)。与之前的工作相比,该框架在时空分辨率和预测精度方面都有显著提高。由此得出的全覆盖估算结果显示,在研究期间,全球陆地XCO₂增加了2.22 ppm /年,北半球的季节性幅度明显更大。高时空保真度捕获了快速、精细尺度的XCO₂波动,如城市-郊区梯度和日变化,这些都是以前的粗糙数据集无法解决的。这一无缝、高质量的数据集将为未来全球和区域“双碳”政策实施和气候变化研究提供坚实的基础。该数据集可以在https://doi.org/10.11888/Atmos.tpdc.302399上免费访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
10.10%
发文量
200
审稿时长
33 days
期刊介绍: Environmental Impact Assessment Review is an interdisciplinary journal that serves a global audience of practitioners, policymakers, and academics involved in assessing the environmental impact of policies, projects, processes, and products. The journal focuses on innovative theory and practice in environmental impact assessment (EIA). Papers are expected to present innovative ideas, be topical, and coherent. The journal emphasizes concepts, methods, techniques, approaches, and systems related to EIA theory and practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信