{"title":"The Microbial Factor in Subsurface Hydrogen behavior: Implications for Wettability and Interfacial Dynamics","authors":"Hamid Esfandyari , Raziallah Jafari Jozani , Aliakbar Hassanpouryouzband , Farhid Hemmatzadeh , Manouchehr Haghighi , Stefan Iglauer , Alireza Keshavarz , Abbas Zeinijahromi","doi":"10.1016/j.cis.2025.103647","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial activity plays a significant role in subsurface hydrogen behavior, with implications for underground storage and natural hydrogen systems. This study examines how microbial processes influence the wettability and solid–liquid interfacial characteristics of key subsurface minerals, calcite, dolomite, quartz, and gypsum, in hydrogen-brine-rock systems under realistic subsurface conditions. Wettability directly affects hydrogen distribution, flow dynamics, and trapping, making it a critical factor for both storage and natural recovery applications. Experiments were conducted under high-pressure, high-temperature conditions, with SEM/EDS analysis used to characterize interfacial modifications and mineral surface changes across three scenarios: clean, organic acid-aged, and microbial-aged. Microbial aging consistently increased mineral hydrophilicity, reducing advancing contact angles, such as from 57° (clean) to 40° (microbial-aged) on calcite at 50 °C and 8 MPa. Similar trends were observed for dolomite, with smaller changes for quartz and gypsum. Microbial biofilms were most prominent on calcite and dolomite surfaces, accompanied by decreases in brine pH (e.g., from 7.4 to 5.2 for calcite). These results reveal how microbial processes reshape mineral properties and hydrogen behavior in the subsurface. This study provides critical insights into microbial-mineral interactions, offering valuable guidance for optimizing hydrogen storage and natural hydrogen recovery systems.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"346 ","pages":"Article 103647"},"PeriodicalIF":19.3000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625002581","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial activity plays a significant role in subsurface hydrogen behavior, with implications for underground storage and natural hydrogen systems. This study examines how microbial processes influence the wettability and solid–liquid interfacial characteristics of key subsurface minerals, calcite, dolomite, quartz, and gypsum, in hydrogen-brine-rock systems under realistic subsurface conditions. Wettability directly affects hydrogen distribution, flow dynamics, and trapping, making it a critical factor for both storage and natural recovery applications. Experiments were conducted under high-pressure, high-temperature conditions, with SEM/EDS analysis used to characterize interfacial modifications and mineral surface changes across three scenarios: clean, organic acid-aged, and microbial-aged. Microbial aging consistently increased mineral hydrophilicity, reducing advancing contact angles, such as from 57° (clean) to 40° (microbial-aged) on calcite at 50 °C and 8 MPa. Similar trends were observed for dolomite, with smaller changes for quartz and gypsum. Microbial biofilms were most prominent on calcite and dolomite surfaces, accompanied by decreases in brine pH (e.g., from 7.4 to 5.2 for calcite). These results reveal how microbial processes reshape mineral properties and hydrogen behavior in the subsurface. This study provides critical insights into microbial-mineral interactions, offering valuable guidance for optimizing hydrogen storage and natural hydrogen recovery systems.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.