Low-power hardware architecture of optimized logarithmic square rooter with enhanced error compensation for error-tolerant systems

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Prateek Goyal, Sujit Kumar Sahoo
{"title":"Low-power hardware architecture of optimized logarithmic square rooter with enhanced error compensation for error-tolerant systems","authors":"Prateek Goyal,&nbsp;Sujit Kumar Sahoo","doi":"10.1016/j.vlsi.2025.102522","DOIUrl":null,"url":null,"abstract":"<div><div>Approximate computing optimizes arithmetic circuits by reducing power and resource usage for applications that tolerate some error, offering hardware advantages over traditional designs. A key component, the square rooter, is resource-intensive, especially in image and signal processing, making its optimization crucial. This work presents a low-power, resource-efficient optimized logarithmic square rooter (OLSR) that calculates the square root of a <span><math><mrow><mn>2</mn><mi>n</mi></mrow></math></span>-bit unsigned integer using addition and shift operations with minimal error. The proposed approximate square rooter outperforms the precise restoring array-based design by using 73% fewer resources, achieving a 53% faster operation, and delivering 81% better power savings. Despite some trade-offs in approximation error, the results are highly acceptable, with a normalized mean error distance (NMED) of <span><math><mrow><mn>1</mn><mo>.</mo><mn>08</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>, a mean relative error distance (MRED) of <span><math><mrow><mn>1</mn><mo>.</mo><mn>77</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>, a mean error distance (MED) of 2.77, and a maximum error distance (ED<span><math><msub><mrow></mrow><mrow><mtext>max</mtext></mrow></msub></math></span>) of 11. This design balances efficiency and precision well. The design is implemented on an Artix-7 FPGA using Verilog-HDL and validated in Xilinx Vivado. Comparisons with four other approaches highlight the OLSR’s strong balance between accuracy and hardware efficiency, with outstanding performance in the Sobel edge detection and Image enhancement application.</div></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"105 ","pages":"Article 102522"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926025001798","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Approximate computing optimizes arithmetic circuits by reducing power and resource usage for applications that tolerate some error, offering hardware advantages over traditional designs. A key component, the square rooter, is resource-intensive, especially in image and signal processing, making its optimization crucial. This work presents a low-power, resource-efficient optimized logarithmic square rooter (OLSR) that calculates the square root of a 2n-bit unsigned integer using addition and shift operations with minimal error. The proposed approximate square rooter outperforms the precise restoring array-based design by using 73% fewer resources, achieving a 53% faster operation, and delivering 81% better power savings. Despite some trade-offs in approximation error, the results are highly acceptable, with a normalized mean error distance (NMED) of 1.08×102, a mean relative error distance (MRED) of 1.77×102, a mean error distance (MED) of 2.77, and a maximum error distance (EDmax) of 11. This design balances efficiency and precision well. The design is implemented on an Artix-7 FPGA using Verilog-HDL and validated in Xilinx Vivado. Comparisons with four other approaches highlight the OLSR’s strong balance between accuracy and hardware efficiency, with outstanding performance in the Sobel edge detection and Image enhancement application.
基于改进误差补偿的对数平方根容错系统的低功耗硬件结构
近似计算通过减少可容忍某些错误的应用程序的功耗和资源使用来优化算术电路,提供优于传统设计的硬件优势。一个关键的组件,平方根,是资源密集型的,特别是在图像和信号处理,使其优化至关重要。这项工作提出了一个低功耗,资源高效的优化对数平方根(OLSR),它使用加法和移位操作以最小的误差计算2n位无符号整数的平方根。所提出的近似平方根比基于精确恢复阵列的设计节省了73%的资源,实现了53%的操作速度,并提供了81%的节能。尽管在近似误差方面存在一些折衷,但结果是高度可接受的,归一化平均误差距离(NMED)为1.08×10−2,平均相对误差距离(MRED)为1.77×10−2,平均误差距离(MED)为2.77,最大误差距离(EDmax)为11。该设计很好地平衡了效率和精度。该设计采用Verilog-HDL在Artix-7 FPGA上实现,并在Xilinx Vivado中进行了验证。与其他四种方法的比较突出了OLSR在精度和硬件效率之间的强大平衡,在Sobel边缘检测和图像增强应用中具有出色的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Integration-The Vlsi Journal
Integration-The Vlsi Journal 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.30%
发文量
107
审稿时长
6 months
期刊介绍: Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics: Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信