Haoyu Wang , J.F. Gómez Aguilar , Ghaus ur Rahman , Zizhen Zhang
{"title":"Stability and Hopf bifurcation analysis of a delayed malware mutation model for wireless rechargeable sensor networks with energy constraints","authors":"Haoyu Wang , J.F. Gómez Aguilar , Ghaus ur Rahman , Zizhen Zhang","doi":"10.1016/j.asej.2025.103697","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid progression in the field of information technology, the security of wireless sensor networks (WSNs) becomes an alarming issue around the globe. This research presents an innovative malware propagation model for wireless rechargeable sensor networks (WRSNs), including virus mutation and two specific temporal delays: a charging delay (<span><math><msub><mrow><mi>ς</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>) and a temporary vaccination period delay (<span><math><msub><mrow><mi>ς</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>). In contrast to other models, our proposed approach accurately reflects the real-time dynamics of energy-constrained WRSNs by incorporating a fifth compartment for low-energy nodes and implementing unidirectional malware mutation. Utilizing linear stability and Hopf bifurcation analyses, we establish explicit criteria for the system's transition from stability to periodic oscillations. The incorporation of delay parameters clarifies essential thresholds for the occurrence of Hopf bifurcation. In contrast to Liu et al. (2020), who focused solely on charging delay and omitted global stability analysis, our enhanced model integrates two fundamental reproduction numbers, energy limitations, and dual delays, thereby facilitating more precise prediction and control of malware propagation. We additionally demonstrate global stability utilizing a Lyapunov functional and support our theoretical results with extensive numerical simulations. A stepwise implementation algorithm is also included to facilitate realistic deployment in IoT contexts. Our technique, in comparison to previous models, provides a delay reduction of up to 35%, increased resilience against mutated malware, and prolonged sustainable operation under energy limitations, rendering it extremely suitable for safe real-world WRSNs.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 11","pages":"Article 103697"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925004381","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid progression in the field of information technology, the security of wireless sensor networks (WSNs) becomes an alarming issue around the globe. This research presents an innovative malware propagation model for wireless rechargeable sensor networks (WRSNs), including virus mutation and two specific temporal delays: a charging delay () and a temporary vaccination period delay (). In contrast to other models, our proposed approach accurately reflects the real-time dynamics of energy-constrained WRSNs by incorporating a fifth compartment for low-energy nodes and implementing unidirectional malware mutation. Utilizing linear stability and Hopf bifurcation analyses, we establish explicit criteria for the system's transition from stability to periodic oscillations. The incorporation of delay parameters clarifies essential thresholds for the occurrence of Hopf bifurcation. In contrast to Liu et al. (2020), who focused solely on charging delay and omitted global stability analysis, our enhanced model integrates two fundamental reproduction numbers, energy limitations, and dual delays, thereby facilitating more precise prediction and control of malware propagation. We additionally demonstrate global stability utilizing a Lyapunov functional and support our theoretical results with extensive numerical simulations. A stepwise implementation algorithm is also included to facilitate realistic deployment in IoT contexts. Our technique, in comparison to previous models, provides a delay reduction of up to 35%, increased resilience against mutated malware, and prolonged sustainable operation under energy limitations, rendering it extremely suitable for safe real-world WRSNs.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.