A basic triad in Macdonald theory

IF 4.5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
A. Mironov , A. Morozov , A. Popolitov
{"title":"A basic triad in Macdonald theory","authors":"A. Mironov ,&nbsp;A. Morozov ,&nbsp;A. Popolitov","doi":"10.1016/j.physletb.2025.139840","DOIUrl":null,"url":null,"abstract":"<div><div>Within the context of wavefunctions of integrable many-body systems, rational multivariable Baker-Akhiezer (BA) functions were introduced by O. Chalykh, M. Feigin and A. Veselov and, in the case of the trigonometric Ruijsenaars-Schneider system, can be associated with a reduction of the Macdonald symmetric polynomials at <span><math><mrow><mi>t</mi><mo>=</mo><msup><mi>q</mi><mrow><mo>−</mo><mi>m</mi></mrow></msup></mrow></math></span> with integer partition labels substituted by arbitrary complex numbers. A parallel attempt to describe wavefunctions of the bispectral trigonometric Ruijsenaars-Schneider problem was made by M. Noumi and J. Shiraishi who proposed a power series that reduces to the Macdonald polynomials at particular values of parameters. It turns out that this power series also reduces to the BA functions at <span><math><mrow><mi>t</mi><mo>=</mo><msup><mi>q</mi><mrow><mo>−</mo><mi>m</mi></mrow></msup></mrow></math></span>, as we demonstrate in this letter. This makes the Macdonald polynomials, the BA functions and the Noumi-Shiraishi (NS) series a closely tied <em>triad</em> of objects, which have very different definitions, but are straightforwardly related with each other. In particular, theory of the BA functions provides a nice system of simple linear equations, while the NS functions provide a nice way to represent the multivariable BA function explicitly with arbitrary number of variables.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"869 ","pages":"Article 139840"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325006008","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Within the context of wavefunctions of integrable many-body systems, rational multivariable Baker-Akhiezer (BA) functions were introduced by O. Chalykh, M. Feigin and A. Veselov and, in the case of the trigonometric Ruijsenaars-Schneider system, can be associated with a reduction of the Macdonald symmetric polynomials at t=qm with integer partition labels substituted by arbitrary complex numbers. A parallel attempt to describe wavefunctions of the bispectral trigonometric Ruijsenaars-Schneider problem was made by M. Noumi and J. Shiraishi who proposed a power series that reduces to the Macdonald polynomials at particular values of parameters. It turns out that this power series also reduces to the BA functions at t=qm, as we demonstrate in this letter. This makes the Macdonald polynomials, the BA functions and the Noumi-Shiraishi (NS) series a closely tied triad of objects, which have very different definitions, but are straightforwardly related with each other. In particular, theory of the BA functions provides a nice system of simple linear equations, while the NS functions provide a nice way to represent the multivariable BA function explicitly with arbitrary number of variables.
麦克唐纳理论中的基本三和弦
在可积多体系统的波函数中,O. Chalykh、m . Feigin和a . Veselov引入了有理多变量Baker-Akhiezer (BA)函数,在三角rujsenaars - schneider系统中,它可以与t=q−m处麦克唐纳对称多项式的约简相关联,用任意复数代替整数划分标记。一个平行的尝试来描述双谱三角rujsenaars - schneider问题的波函数是由M. Noumi和J. Shiraishi提出的,他们提出了一个幂级数,在特定参数值下简化为麦克唐纳多项式。结果表明,这个幂级数在t=q−m处也简化为BA函数,正如我们在这封信中所证明的那样。这使得Macdonald多项式、BA函数和Noumi-Shiraishi (NS)级数成为一个紧密联系的三联体,它们有非常不同的定义,但彼此直接相关。特别是,BA函数的理论提供了一个很好的简单线性方程组,而NS函数提供了一种很好的方法,可以用任意数量的变量显式表示多变量BA函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信