{"title":"Chemical structure design for eco-friendly dielectric polymer materials","authors":"Baoquan Wan , Jun-Wei Zha , Zhi-Min Dang","doi":"10.1016/j.progpolymsci.2025.102014","DOIUrl":null,"url":null,"abstract":"<div><div>Environmentally friendly dielectric polymer materials that can subjectively adapt to environmental changes and self-restore mechanical and electrical insulation properties continue to emerge. These adaptive systems are expected to revolutionize the development of smart grids, power electronic systems, and other fields. We will present a new trend emerging in environmentally friendly dielectric design that utilizes reversible chemistry (both non-covalent and covalent) to control reactions originating at the most fundamental (molecular) level. Dielectrics designed with this molecular structure will be able to heal or recycle themselves on a macroscopic scale as a result of changes in the molecular structure of the material (i.e., rearrangement or reorganization of polymer components or aggregates). However, the ability to design the molecular structure and ensure the original excellent properties of the dielectric is of interest to researchers. This review will summarize the challenges and opportunities in chemical structure modification with respect to the needs of dielectric application scenarios and specific examples. Furthermore, it will guide the design and preparation of environmentally friendly dielectrics and promote the development of interdisciplinary research between high-voltage insulation technology and polymer chemistry.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"169 ","pages":"Article 102014"},"PeriodicalIF":26.1000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670025000930","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Environmentally friendly dielectric polymer materials that can subjectively adapt to environmental changes and self-restore mechanical and electrical insulation properties continue to emerge. These adaptive systems are expected to revolutionize the development of smart grids, power electronic systems, and other fields. We will present a new trend emerging in environmentally friendly dielectric design that utilizes reversible chemistry (both non-covalent and covalent) to control reactions originating at the most fundamental (molecular) level. Dielectrics designed with this molecular structure will be able to heal or recycle themselves on a macroscopic scale as a result of changes in the molecular structure of the material (i.e., rearrangement or reorganization of polymer components or aggregates). However, the ability to design the molecular structure and ensure the original excellent properties of the dielectric is of interest to researchers. This review will summarize the challenges and opportunities in chemical structure modification with respect to the needs of dielectric application scenarios and specific examples. Furthermore, it will guide the design and preparation of environmentally friendly dielectrics and promote the development of interdisciplinary research between high-voltage insulation technology and polymer chemistry.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.