Yihan Zhao, Xiuying Xie, Longchao Ma, Xinzhou Wang, Yanjun Li
{"title":"Mechanism of transverse mechanical property evolution in bamboo induced by flattening","authors":"Yihan Zhao, Xiuying Xie, Longchao Ma, Xinzhou Wang, Yanjun Li","doi":"10.1007/s00226-025-01698-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores how flattening transforms transverse mechanical properties of bamboo through the redistribution of vascular bundles and residual stresses. Using dual-scale characterization and mechanical testing, we reveal that: (1) Flattening enhances transverse strength, with non-notched flattened bamboo achieving peak compression strength (23.3 MPa) and tension strength (9.4 MPa), while notched flattened bamboo excels in the small-size tension test (10.8 MPa); (2) Size effects arise from structural reorganization rather than stochastic defects; (3) Specific strength analysis demonstrates the lightweight advantage of notched flattened bamboo, confirming flattening improves the intrinsic mechanical efficiency beyond densification. These mechanistic insights address critical gaps in engineered bamboo design, enabling tailored applications.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-025-01698-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores how flattening transforms transverse mechanical properties of bamboo through the redistribution of vascular bundles and residual stresses. Using dual-scale characterization and mechanical testing, we reveal that: (1) Flattening enhances transverse strength, with non-notched flattened bamboo achieving peak compression strength (23.3 MPa) and tension strength (9.4 MPa), while notched flattened bamboo excels in the small-size tension test (10.8 MPa); (2) Size effects arise from structural reorganization rather than stochastic defects; (3) Specific strength analysis demonstrates the lightweight advantage of notched flattened bamboo, confirming flattening improves the intrinsic mechanical efficiency beyond densification. These mechanistic insights address critical gaps in engineered bamboo design, enabling tailored applications.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.