Sentiment index as a predictor of CPI: A lexicon-based approach using economic news data in Vietnam

Q1 Economics, Econometrics and Finance
Dang Phong Nguyen , Dang Thi Viet Duc , Nguyen Thi Mai Trang , Vu Quang Ket , Nguyen Anh Hoang
{"title":"Sentiment index as a predictor of CPI: A lexicon-based approach using economic news data in Vietnam","authors":"Dang Phong Nguyen ,&nbsp;Dang Thi Viet Duc ,&nbsp;Nguyen Thi Mai Trang ,&nbsp;Vu Quang Ket ,&nbsp;Nguyen Anh Hoang","doi":"10.1016/j.joitmc.2025.100620","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to construct a sentiment index for predicting CPI in Vietnam. Adopting a lexicon-based approach, the study utilized two widely recognized sentiment dictionaries, specialized in financial and economic contexts, to build the sentiment index. Data was mined from nine official economic and financial news websites for the period 2017–2024 using GDELT, resulting in approximately 200,000 URLs relevant to inflation sentiment. Our findings confirm two key points. First, sentiment factors are a significant predictor of inflation fluctuations, contributing 22.3 % to the variance. Second, by incorporating sentiment variables into Vector Autoregressive (VAR) and Artificial Neural Network (ANN) models, we achieved an acceptable accuracy in forecasting Vietnam's inflation. These findings, on the one hand, provide an empirical case for utilizing sentiment analysis in macroeconomic forecasting within developing countries. On the other hand, these findings suggest that policymakers should leverage sentiment analysis to enhance the effectiveness and timeliness of economic management in an increasingly volatile economy.</div></div>","PeriodicalId":16678,"journal":{"name":"Journal of Open Innovation: Technology, Market, and Complexity","volume":"11 3","pages":"Article 100620"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Innovation: Technology, Market, and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2199853125001556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to construct a sentiment index for predicting CPI in Vietnam. Adopting a lexicon-based approach, the study utilized two widely recognized sentiment dictionaries, specialized in financial and economic contexts, to build the sentiment index. Data was mined from nine official economic and financial news websites for the period 2017–2024 using GDELT, resulting in approximately 200,000 URLs relevant to inflation sentiment. Our findings confirm two key points. First, sentiment factors are a significant predictor of inflation fluctuations, contributing 22.3 % to the variance. Second, by incorporating sentiment variables into Vector Autoregressive (VAR) and Artificial Neural Network (ANN) models, we achieved an acceptable accuracy in forecasting Vietnam's inflation. These findings, on the one hand, provide an empirical case for utilizing sentiment analysis in macroeconomic forecasting within developing countries. On the other hand, these findings suggest that policymakers should leverage sentiment analysis to enhance the effectiveness and timeliness of economic management in an increasingly volatile economy.
情绪指数作为CPI的预测指标:使用越南经济新闻数据的基于词典的方法
本研究旨在建构一个预测越南CPI的情绪指数。采用基于词典的方法,本研究使用了两个广泛认可的情感词典,专门研究金融和经济背景,来构建情感指数。使用GDELT从2017-2024年期间的9个官方经济和金融新闻网站中挖掘数据,得出大约20万个与通胀情绪相关的url。我们的发现证实了两个关键点。首先,情绪因素是通货膨胀波动的重要预测因素,对方差的贡献为22.3% %。其次,通过将情绪变量纳入向量自回归(VAR)和人工神经网络(ANN)模型,我们在预测越南通货膨胀方面取得了可接受的准确性。这些发现一方面为在发展中国家的宏观经济预测中利用情绪分析提供了实证案例。另一方面,这些发现表明,政策制定者应该利用情绪分析来提高经济管理的有效性和及时性,以应对日益动荡的经济。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Open Innovation: Technology, Market, and Complexity
Journal of Open Innovation: Technology, Market, and Complexity Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
11.00
自引率
0.00%
发文量
196
审稿时长
1 day
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信