{"title":"The role of Large Language Models in IoT security: A systematic review of advances, challenges, and opportunities","authors":"Saeid Jamshidi , Negar Shahabi , Amin Nikanjam , Kawser Wazed Nafi , Foutse Khomh , Carol Fung","doi":"10.1016/j.iot.2025.101735","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet of Things (IoT) has revolutionized digital ecosystems by interconnecting billions of devices across various industries, enabling enhanced automation, real-time monitoring, and data-driven decision-making. However, this expansion has introduced significant security and privacy challenges due to the heterogeneous nature of IoT devices, resource constraints, and the decentralized nature of their architectures. Large Language Models (LLMs) have recently shown promise in improving cybersecurity by enabling automated threat intelligence, anomaly detection, malware classification, and privacy-aware security enforcement. Therefore, this systematic review investigates research published between 2015 and 2025 to examine the intersection of LLMs, IoT security, and privacy. We evaluate state-of-the-art LLM-based security frameworks, highlighting their effectiveness, limitations, and impact on IoT cybersecurity. In addition, this review identifies key research gaps and challenges, providing insight into the scalability, efficiency, and adaptability of LLM-driven security solutions. This work aims to contribute to the advancement of AI-driven IoT security frameworks, supporting the development of resilient and privacy-preserving cybersecurity architectures.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"34 ","pages":"Article 101735"},"PeriodicalIF":7.6000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525002495","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Things (IoT) has revolutionized digital ecosystems by interconnecting billions of devices across various industries, enabling enhanced automation, real-time monitoring, and data-driven decision-making. However, this expansion has introduced significant security and privacy challenges due to the heterogeneous nature of IoT devices, resource constraints, and the decentralized nature of their architectures. Large Language Models (LLMs) have recently shown promise in improving cybersecurity by enabling automated threat intelligence, anomaly detection, malware classification, and privacy-aware security enforcement. Therefore, this systematic review investigates research published between 2015 and 2025 to examine the intersection of LLMs, IoT security, and privacy. We evaluate state-of-the-art LLM-based security frameworks, highlighting their effectiveness, limitations, and impact on IoT cybersecurity. In addition, this review identifies key research gaps and challenges, providing insight into the scalability, efficiency, and adaptability of LLM-driven security solutions. This work aims to contribute to the advancement of AI-driven IoT security frameworks, supporting the development of resilient and privacy-preserving cybersecurity architectures.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.