Induced cycles vertex number and (1,2)-domination in cubic graphs

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Rija Erveš , Aleksandra Tepeh
{"title":"Induced cycles vertex number and (1,2)-domination in cubic graphs","authors":"Rija Erveš ,&nbsp;Aleksandra Tepeh","doi":"10.1016/j.amc.2025.129700","DOIUrl":null,"url":null,"abstract":"<div><div>A (1,2)-dominating set in a graph <span><math><mi>G</mi></math></span> is a set <span><math><mi>S</mi></math></span> such that every vertex outside <span><math><mi>S</mi></math></span> has at least one neighbor in <span><math><mi>S</mi></math></span>, and each vertex in <span><math><mi>S</mi></math></span> has at least two neighbors in <span><math><mi>S</mi></math></span>. The (1,2)-domination number, <span><math><mrow><msub><mi>γ</mi><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum size of such a set, while <span><math><mrow><msub><mi>c</mi><mrow><mrow><mi>i</mi></mrow><mi>n</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the cardinality of the largest vertex set in <span><math><mi>G</mi></math></span> that induces one or more cycles. In this paper, we initiate the study of a relationship between these two concepts and discuss how establishing such a connection can contribute to solving a conjecture on the lower bound of <span><math><mrow><msub><mi>c</mi><mrow><mrow><mi>i</mi></mrow><mi>n</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for cubic graphs. We also establish an upper bound on <span><math><mrow><msub><mi>c</mi><mrow><mrow><mi>i</mi></mrow><mi>n</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for cubic graphs and characterize graphs that achieve this bound.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"510 ","pages":"Article 129700"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325004266","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A (1,2)-dominating set in a graph G is a set S such that every vertex outside S has at least one neighbor in S, and each vertex in S has at least two neighbors in S. The (1,2)-domination number, γ1,2(G), is the minimum size of such a set, while cind(G) is the cardinality of the largest vertex set in G that induces one or more cycles. In this paper, we initiate the study of a relationship between these two concepts and discuss how establishing such a connection can contribute to solving a conjecture on the lower bound of cind(G) for cubic graphs. We also establish an upper bound on cind(G) for cubic graphs and characterize graphs that achieve this bound.
三次图中的诱导环顶点数和(1,2)-支配
图G中的(1,2)支配集是一个集S,使得S以外的每个顶点在S中至少有一个邻居,并且S中的每个顶点在S中至少有两个邻居。(1,2)支配数γ1,2(G)是这样一个集的最小大小,而cind(G)是G中诱导一个或多个循环的最大顶点集的基数。在本文中,我们开始研究这两个概念之间的关系,并讨论如何建立这样的联系有助于解决关于三次图的cind(G)下界的一个猜想。我们还建立了三次图的cind(G)的上界,并刻画了达到这个上界的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信