Machine learning analysis of tangent hyperbolic nanofluid with radiation and Arrhenius activation energy over falling cone under gravity

Q1 Mathematics
Muhammad Zubair , Hamid Qureshi , Usman Khaliq , Taoufik Saidani , Waqar Azeem Khan
{"title":"Machine learning analysis of tangent hyperbolic nanofluid with radiation and Arrhenius activation energy over falling cone under gravity","authors":"Muhammad Zubair ,&nbsp;Hamid Qureshi ,&nbsp;Usman Khaliq ,&nbsp;Taoufik Saidani ,&nbsp;Waqar Azeem Khan","doi":"10.1016/j.padiff.2025.101280","DOIUrl":null,"url":null,"abstract":"<div><div>This study is a machine learning investigation of the advance level nanofluidic coolant through a cone in a two-dimensional transitory boundary layer. The model accounts for both radiation absorption and the Arrhenius activation energy. Synthetic datasets from governing mathematical model are used in Artificial Intelligence (AI) based Levenberg Marquardt Back Propagation algorithm (LM-BP). Multiple scenarios of Tangent Hyperbolic Nanofluidic (THNF) coolant are framed with variation of influencing characteristics like Magnetic field <em>M</em>, power law index <em>n</em>, permeability <em>k</em>, Radiation absorption <em>Q</em>, Prandtl ratio <em>Pr</em>, Brownian motion <em>Nb</em>, Lewis number <em>Le</em> and Chemical reaction parameter γ. Convergence parameters of AI-based feed routing Neural Network computing is presented through graphs and numerical tables. Results indicate that flow slows when the Lorentz force and surface permeability grow, but it gets stronger when thermal absorption and momentum to thermal diffusivity ratio Pr increase. Meanwhile, the temperature increases when thermal absorption rises and drops when thermal to mass diffusivity ratio Le increases so that temperature falls for greater chemical reaction influence.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101280"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This study is a machine learning investigation of the advance level nanofluidic coolant through a cone in a two-dimensional transitory boundary layer. The model accounts for both radiation absorption and the Arrhenius activation energy. Synthetic datasets from governing mathematical model are used in Artificial Intelligence (AI) based Levenberg Marquardt Back Propagation algorithm (LM-BP). Multiple scenarios of Tangent Hyperbolic Nanofluidic (THNF) coolant are framed with variation of influencing characteristics like Magnetic field M, power law index n, permeability k, Radiation absorption Q, Prandtl ratio Pr, Brownian motion Nb, Lewis number Le and Chemical reaction parameter γ. Convergence parameters of AI-based feed routing Neural Network computing is presented through graphs and numerical tables. Results indicate that flow slows when the Lorentz force and surface permeability grow, but it gets stronger when thermal absorption and momentum to thermal diffusivity ratio Pr increase. Meanwhile, the temperature increases when thermal absorption rises and drops when thermal to mass diffusivity ratio Le increases so that temperature falls for greater chemical reaction influence.
重力作用下落锥上具有辐射和Arrhenius活化能的正切双曲纳米流体的机器学习分析
本研究采用机器学习的方法研究了先进的纳米流控冷却剂在二维过渡边界层中的锥形流动。该模型同时考虑了辐射吸收和阿伦尼乌斯活化能。基于人工智能(AI)的Levenberg Marquardt反向传播算法(LM-BP)采用控制数学模型合成的数据集。研究了正切双曲型纳米流体(THNF)冷却剂的磁场M、幂律指数n、磁导率k、辐射吸收Q、普朗特比Pr、布朗运动Nb、路易斯数Le和化学反应参数γ等影响特性的变化。以图形和数值表的形式给出了基于人工智能的馈电路由神经网络计算的收敛参数。结果表明,随着洛伦兹力和表面渗透率的增大,流动速度减慢,但随着热吸收和动量与热扩散比Pr的增大,流动速度加快。同时,随着热吸收率的升高,温度升高;随着热质扩散比Le的增大,温度降低,化学反应影响更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信