Geometry-aware triplane diffusion for single shape generation with feature alignment

IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
HongLiang Weng, Qinghai Zheng, Yuanlong Yu, Yixin Zhuang
{"title":"Geometry-aware triplane diffusion for single shape generation with feature alignment","authors":"HongLiang Weng,&nbsp;Qinghai Zheng,&nbsp;Yuanlong Yu,&nbsp;Yixin Zhuang","doi":"10.1016/j.cag.2025.104384","DOIUrl":null,"url":null,"abstract":"<div><div>We tackle the problem of single-shape 3D generation, aiming to synthesize diverse and plausible shapes conditioned on a single input exemplar. This task is challenging due to the absence of dataset-level variation, requiring models to internalize structural patterns and generate novel shapes from limited local geometric cues. To address this, we propose a unified framework combining geometry-aware representation learning with a multiscale diffusion process. Our approach centers on a triplane autoencoder enhanced with a spatial pattern predictor and attention-based feature fusion, enabling fine-grained perception of local structures. To preserve structural coherence during generation, we introduce a soft feature distribution alignment loss that aligns features between input and generated shapes, balancing fidelity and diversity. Finally, we adopt a hierarchical diffusion strategy that progressively refines triplane features from coarse to fine, stabilizing training and improving quality. Extensive experiments demonstrate that our method produces high-fidelity, structurally consistent, and diverse shapes, establishing a strong baseline for single-shape generation.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"132 ","pages":"Article 104384"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325002250","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We tackle the problem of single-shape 3D generation, aiming to synthesize diverse and plausible shapes conditioned on a single input exemplar. This task is challenging due to the absence of dataset-level variation, requiring models to internalize structural patterns and generate novel shapes from limited local geometric cues. To address this, we propose a unified framework combining geometry-aware representation learning with a multiscale diffusion process. Our approach centers on a triplane autoencoder enhanced with a spatial pattern predictor and attention-based feature fusion, enabling fine-grained perception of local structures. To preserve structural coherence during generation, we introduce a soft feature distribution alignment loss that aligns features between input and generated shapes, balancing fidelity and diversity. Finally, we adopt a hierarchical diffusion strategy that progressively refines triplane features from coarse to fine, stabilizing training and improving quality. Extensive experiments demonstrate that our method produces high-fidelity, structurally consistent, and diverse shapes, establishing a strong baseline for single-shape generation.

Abstract Image

具有特征对齐的单形状生成的几何感知三平面扩散
我们解决了单一形状的3D生成问题,旨在合成基于单一输入范例的多种合理形状。由于缺乏数据集级别的变化,这项任务具有挑战性,需要模型内化结构模式并从有限的局部几何线索生成新形状。为了解决这个问题,我们提出了一个将几何感知表示学习与多尺度扩散过程相结合的统一框架。我们的方法以三平面自编码器为中心,增强了空间模式预测器和基于注意力的特征融合,实现了对局部结构的细粒度感知。为了在生成过程中保持结构一致性,我们引入了软特征分布对齐损失,在输入和生成的形状之间对齐特征,平衡保真度和多样性。最后,我们采用分层扩散策略,逐步将三平面特征从粗细化到细,稳定训练并提高质量。大量的实验表明,我们的方法可以产生高保真度,结构一致和多样化的形状,为单一形状的生成建立了强大的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信