Self‐Doped Cu2+xZn1‐xSnSe4 Nanosheets for Enhanced Thermoelectric Catalytic‐Ferroptotic Therapy

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Siyuan Zhang, Yaqian Du, Lu Yang, Yushan Dong, Pengyu Zang, Meiqi Yang, Shili Gai, Piaoping Yang
{"title":"Self‐Doped Cu2+xZn1‐xSnSe4 Nanosheets for Enhanced Thermoelectric Catalytic‐Ferroptotic Therapy","authors":"Siyuan Zhang, Yaqian Du, Lu Yang, Yushan Dong, Pengyu Zang, Meiqi Yang, Shili Gai, Piaoping Yang","doi":"10.1002/adma.202512426","DOIUrl":null,"url":null,"abstract":"Thermoelectric technology, a rapidly advancing field in medical therapy, encounters challenges in achieving efficient thermal and electrical transport properties within the limited thermal range compatible with biological systems. This study presents a high‐performance thermoelectric catalytic therapy (TECT) utilizing Cu self‐doped Cu<jats:sub>2+x</jats:sub>Zn<jats:sub>1‐x</jats:sub>SnSe<jats:sub>4</jats:sub> nanosheets synthesized with non‐stoichiometric ratios modified with DSPE‐mPEG<jats:sub>2000</jats:sub> (n‐CZTSe@PEG NSs). Under 808 nm laser irradiation, n‐CZTSe@PEG NSs demonstrate an impressive photothermal conversion efficiency of 47.62%, rapidly establishing a significant local temperature gradient. This increase in temperature initiates thermoelectric catalysis (TEC), effectively generating reactive oxygen species (ROS) that are toxic to cancer cells. The thermoelectric figure of merit <jats:italic>ZT</jats:italic> of n‐CZTSe@PEG NSs at room temperature is observed to be 45.45% higher than that of pure phase CZTSe. Experimental results, supported by density functional theory calculations, reveal that lattice disorder and the presence of highly degenerate electronic bands at the band edges decouple thermal and electrical transport, enhancing the TEC effect. The additional copper ions at zinc sites increase carrier concentration, hole conductivity, and peroxidase‐like activity, thereby enhancing ROS production, depleting glutathione, accelerating lipid peroxidation, and inhibiting glutathione peroxidase 4, ultimately inducing ferroptosis in cancer cells. Consequently, a synergistic TECT and ferroptosis effect is achieved, resulting in significant anti‐cancer efficacy.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"52 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202512426","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoelectric technology, a rapidly advancing field in medical therapy, encounters challenges in achieving efficient thermal and electrical transport properties within the limited thermal range compatible with biological systems. This study presents a high‐performance thermoelectric catalytic therapy (TECT) utilizing Cu self‐doped Cu2+xZn1‐xSnSe4 nanosheets synthesized with non‐stoichiometric ratios modified with DSPE‐mPEG2000 (n‐CZTSe@PEG NSs). Under 808 nm laser irradiation, n‐CZTSe@PEG NSs demonstrate an impressive photothermal conversion efficiency of 47.62%, rapidly establishing a significant local temperature gradient. This increase in temperature initiates thermoelectric catalysis (TEC), effectively generating reactive oxygen species (ROS) that are toxic to cancer cells. The thermoelectric figure of merit ZT of n‐CZTSe@PEG NSs at room temperature is observed to be 45.45% higher than that of pure phase CZTSe. Experimental results, supported by density functional theory calculations, reveal that lattice disorder and the presence of highly degenerate electronic bands at the band edges decouple thermal and electrical transport, enhancing the TEC effect. The additional copper ions at zinc sites increase carrier concentration, hole conductivity, and peroxidase‐like activity, thereby enhancing ROS production, depleting glutathione, accelerating lipid peroxidation, and inhibiting glutathione peroxidase 4, ultimately inducing ferroptosis in cancer cells. Consequently, a synergistic TECT and ferroptosis effect is achieved, resulting in significant anti‐cancer efficacy.
自掺杂Cu2+xZn1 - xSnSe4纳米片用于增强热电催化-致铁治疗
热电技术是医学治疗中一个快速发展的领域,在与生物系统兼容的有限热范围内实现有效的热电传输特性面临挑战。本研究提出了一种高性能热电催化疗法(TECT),利用Cu自掺杂Cu2+xZn1‐xSnSe4纳米片,用DSPE‐mPEG2000 (n‐CZTSe@PEG NSs)修饰非化学计量比合成。在808 nm激光照射下,n‐CZTSe@PEG纳米粒子的光热转换效率高达47.62%,并迅速建立了显著的局部温度梯度。温度的升高启动了热电催化(TEC),有效地产生对癌细胞有毒的活性氧(ROS)。在室温下,n‐CZTSe@PEG NSs的热电优值ZT比纯相CZTSe高45.45%。在密度泛函理论计算的支持下,实验结果表明,晶格无序和带边缘高度简并电子带的存在使热电输运解耦,增强了TEC效应。锌位点上额外的铜离子增加了载体浓度、空穴电导率和过氧化物酶样活性,从而增加ROS的产生,消耗谷胱甘肽,加速脂质过氧化,抑制谷胱甘肽过氧化物酶4,最终诱导癌细胞铁凋亡。因此,可以实现TECT和铁下垂的协同作用,从而产生显著的抗癌效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信