Breaking the Conversion Limit in an Intercalation‐Type Cathode by Loosening Aqueous Cation Coordination

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei Zhang, Junwei Yang, Mengru Lin, Yuanhe Sun, Jige Chen, Wen Wen, Aiguo Li, Yi Gao, Xiaolong Li, Daming Zhu
{"title":"Breaking the Conversion Limit in an Intercalation‐Type Cathode by Loosening Aqueous Cation Coordination","authors":"Wei Zhang, Junwei Yang, Mengru Lin, Yuanhe Sun, Jige Chen, Wen Wen, Aiguo Li, Yi Gao, Xiaolong Li, Daming Zhu","doi":"10.1002/adma.202507108","DOIUrl":null,"url":null,"abstract":"Intercalation‐type cathodes continue to dominate aqueous multivalent ion storage, despite higher theoretical capacities being available from conversion reactions involving multiple electron transfer. Pushing intercalation‐type cathodes into conversion is certainly desirable, conventionally with great sacrificing cycling‐stability, kinetics, and discharge potential. To date, limited progress has been achieved in overcoming this longstanding and formidable performance trade‐off. Herein, it is demonstrated that by loosening cation coordination in dilute aqueous systems, typical intercalation‐type electrodes (Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub>) can be unexpectedly extended into the conversion regime, yielding a twofold capacity increase of 417.6 mAh g<jats:sup>−1</jats:sup> with an excellent combination of reversible lifespan (20 000 cycles with a decay rate of 0.013‰), rate capability (314.6 mAh g<jats:sup>−1</jats:sup> at 30 A g<jats:sup>−1</jats:sup>), and enhanced operating potential. Composited <jats:italic>operando</jats:italic> synchrotron X‐ray diffraction technology, first‐principal calculations, and ex situ X‐ray absorption spectroscopy with electron microscopy analyses indicated that hydrophobic perchlorate optimizes the solvation coordination and charge transfer of cations, which overall decreases the interfacial reaction barrier and enhances the reaction potential, hence initiating unique reversible and depth intercalation‒conversion mechanisms. Well‐characterized loosening cation coordination further ensures high ion mobility, extraordinary low‐temperature performance, and robust operation in quasi‐solid‐state pouch cells, offering key insights for improving the energy density of aqueous batteries.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"28 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202507108","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Intercalation‐type cathodes continue to dominate aqueous multivalent ion storage, despite higher theoretical capacities being available from conversion reactions involving multiple electron transfer. Pushing intercalation‐type cathodes into conversion is certainly desirable, conventionally with great sacrificing cycling‐stability, kinetics, and discharge potential. To date, limited progress has been achieved in overcoming this longstanding and formidable performance trade‐off. Herein, it is demonstrated that by loosening cation coordination in dilute aqueous systems, typical intercalation‐type electrodes (Bi2Se3) can be unexpectedly extended into the conversion regime, yielding a twofold capacity increase of 417.6 mAh g−1 with an excellent combination of reversible lifespan (20 000 cycles with a decay rate of 0.013‰), rate capability (314.6 mAh g−1 at 30 A g−1), and enhanced operating potential. Composited operando synchrotron X‐ray diffraction technology, first‐principal calculations, and ex situ X‐ray absorption spectroscopy with electron microscopy analyses indicated that hydrophobic perchlorate optimizes the solvation coordination and charge transfer of cations, which overall decreases the interfacial reaction barrier and enhances the reaction potential, hence initiating unique reversible and depth intercalation‒conversion mechanisms. Well‐characterized loosening cation coordination further ensures high ion mobility, extraordinary low‐temperature performance, and robust operation in quasi‐solid‐state pouch cells, offering key insights for improving the energy density of aqueous batteries.
通过松动水溶液阳离子配位打破插层型阴极的转换极限
插入型阴极继续主导着水相多价离子存储,尽管涉及多个电子转移的转化反应具有更高的理论容量。推动插入式阴极转换当然是可取的,传统上有很大的牺牲循环稳定性,动力学和放电电位。迄今为止,在克服这种长期存在且令人生畏的性能权衡方面取得的进展有限。本文证明,通过放松稀水体系中的阳离子配位,典型的插层型电极(Bi2Se3)可以意外地扩展到转换区,产生两倍的容量增加417.6 mAh g−1,具有良好的可逆寿命(20,000次循环,衰减率为0.013‰),速率能力(30 a g−1时314.6 mAh g−1)和增强的工作电位。复合operando同步X射线衍射技术、第一主计算和非原位X射线吸收光谱与电镜分析表明,疏水高氯酸盐优化了阳离子的溶剂化配位和电荷转移,总体上降低了界面反应势垒,提高了反应电位,从而启动了独特的可逆和深度插层转化机制。良好表征的松散阳离子配位进一步确保了准固态袋状电池的高离子迁移率、非凡的低温性能和稳健的运行,为提高水性电池的能量密度提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信