Integrated Photonic Processor for High‐Efficiency Megapixel RGB Image Encoding

IF 10 1区 物理与天体物理 Q1 OPTICS
Wencan Liu, Yuyao Huang, Peng Meng Chan, Run Sun, Zhenghang Zhang, Yutong He, Caihua Zhang, Sigang Yang, Tingzhao Fu, Hongwei Chen
{"title":"Integrated Photonic Processor for High‐Efficiency Megapixel RGB Image Encoding","authors":"Wencan Liu, Yuyao Huang, Peng Meng Chan, Run Sun, Zhenghang Zhang, Yutong He, Caihua Zhang, Sigang Yang, Tingzhao Fu, Hongwei Chen","doi":"10.1002/lpor.202501417","DOIUrl":null,"url":null,"abstract":"Photonic computing demonstrates significant enhancements over conventional von Neumann architectures in artificial intelligence applications, such as machine vision, offering superior operational bandwidth and reduced energy consumption. However, current photonic computing architectures face scalability challenges when utilizing chip‐scale implementations due to inherent physical constraints and control complexities, particularly when processing high‐dimensional tensor inputs. This study presents a compact Photonic Encoding Unit (PEU) that integrates with on‐chip diffraction‐based optical connections, optimized for diverse visual tasks. The PEU employs amplitude‐phase co‐modulation to facilitate concurrent loading and processing of high‐dimensional tensors. The PEU is fabricated and experimentally validated across various single‐ and multi‐channel visual processing tasks, including grayscale image compression and denoising, megapixel color image compression with a maximum compression ratio of 4.5:1, color image classification over the CIFAR‐4 dataset with an accuracy of 70.3% and a generative image style transfer task. The results demonstrate the PEU's capability for concurrent optimization of multi‐channel vision tasks while maintaining a compact structure. This work establishes a pathway toward expanding information multiplexing dimensions in on‐chip photonic computing systems and advancing future large‐scale, high‐dimensional visual encoding systems.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"15 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202501417","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Photonic computing demonstrates significant enhancements over conventional von Neumann architectures in artificial intelligence applications, such as machine vision, offering superior operational bandwidth and reduced energy consumption. However, current photonic computing architectures face scalability challenges when utilizing chip‐scale implementations due to inherent physical constraints and control complexities, particularly when processing high‐dimensional tensor inputs. This study presents a compact Photonic Encoding Unit (PEU) that integrates with on‐chip diffraction‐based optical connections, optimized for diverse visual tasks. The PEU employs amplitude‐phase co‐modulation to facilitate concurrent loading and processing of high‐dimensional tensors. The PEU is fabricated and experimentally validated across various single‐ and multi‐channel visual processing tasks, including grayscale image compression and denoising, megapixel color image compression with a maximum compression ratio of 4.5:1, color image classification over the CIFAR‐4 dataset with an accuracy of 70.3% and a generative image style transfer task. The results demonstrate the PEU's capability for concurrent optimization of multi‐channel vision tasks while maintaining a compact structure. This work establishes a pathway toward expanding information multiplexing dimensions in on‐chip photonic computing systems and advancing future large‐scale, high‐dimensional visual encoding systems.
集成光子处理器,用于高效率的百万像素RGB图像编码
在机器视觉等人工智能应用中,光子计算比传统的冯·诺伊曼架构有了显著的增强,提供了优越的操作带宽和更低的能耗。然而,由于固有的物理限制和控制复杂性,当前的光子计算架构在利用芯片级实现时面临着可扩展性的挑战,特别是在处理高维张量输入时。本研究提出了一种紧凑的光子编码单元(PEU),集成了基于片上衍射的光学连接,针对各种视觉任务进行了优化。PEU采用幅相共调制来促进高维张量的并发加载和处理。PEU在各种单通道和多通道视觉处理任务中进行了制作和实验验证,包括灰度图像压缩和去噪,最大压缩比为4.5:1的百万像素彩色图像压缩,CIFAR - 4数据集上的彩色图像分类,准确率为70.3%,以及生成图像风格转移任务。结果表明,PEU能够在保持结构紧凑的同时,对多通道视觉任务进行并行优化。这项工作为扩展片上光子计算系统的信息多路复用维度和推进未来大规模、高维视觉编码系统建立了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信