Adaptive synthetic generation using one-step Gibbs Sampler

IF 3.8 Q2 TRANSPORTATION
Marija Kukic, Michel Bierlaire
{"title":"Adaptive synthetic generation using one-step Gibbs Sampler","authors":"Marija Kukic,&nbsp;Michel Bierlaire","doi":"10.1016/j.trip.2025.101597","DOIUrl":null,"url":null,"abstract":"<div><div>Most existing state-of-the-art synthetic generation methods produce static snapshots of data that fail to adapt to demographic changes over time, which makes them quickly outdated. This paper introduces an adaptive approach to synthetic population generation using a one-step Gibbs Sampler that allows for the maintenance of synthetic data by integrating new information adaptively, rather than requiring a complete regeneration of datasets each time an update is necessary. We compare existing independent regeneration methods with the proposed adaptive generation and demonstrate that our approach creates a synthetic population of the same level of accuracy, but more efficiently. Also, we show that when the initial data is scarce or biased, the adaptive generator is particularly effective in enhancing dataset quality by adaptively enriching the population sample. To account for updates, we introduce a new Gibbs-resampling technique as an intermediate step that uses information from the most recent disaggregated real data to correct the errors and improve the representativeness and heterogeneity of the synthetic data. Furthermore, our results indicate that the adaptive approach is robust to unforeseen events, which helps mitigate the lack of representativeness in real data during such occurrences.</div></div>","PeriodicalId":36621,"journal":{"name":"Transportation Research Interdisciplinary Perspectives","volume":"33 ","pages":"Article 101597"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Interdisciplinary Perspectives","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590198225002763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Most existing state-of-the-art synthetic generation methods produce static snapshots of data that fail to adapt to demographic changes over time, which makes them quickly outdated. This paper introduces an adaptive approach to synthetic population generation using a one-step Gibbs Sampler that allows for the maintenance of synthetic data by integrating new information adaptively, rather than requiring a complete regeneration of datasets each time an update is necessary. We compare existing independent regeneration methods with the proposed adaptive generation and demonstrate that our approach creates a synthetic population of the same level of accuracy, but more efficiently. Also, we show that when the initial data is scarce or biased, the adaptive generator is particularly effective in enhancing dataset quality by adaptively enriching the population sample. To account for updates, we introduce a new Gibbs-resampling technique as an intermediate step that uses information from the most recent disaggregated real data to correct the errors and improve the representativeness and heterogeneity of the synthetic data. Furthermore, our results indicate that the adaptive approach is robust to unforeseen events, which helps mitigate the lack of representativeness in real data during such occurrences.
使用一步Gibbs采样器的自适应合成生成
大多数现有的最先进的合成生成方法产生的数据静态快照无法适应人口变化,这使得它们很快就过时了。本文介绍了一种使用一步Gibbs采样器生成合成种群的自适应方法,该方法允许通过自适应地集成新信息来维护合成数据,而不是每次需要更新时都需要完整地再生数据集。我们将现有的独立再生方法与提出的自适应生成方法进行了比较,并证明我们的方法创建了具有相同精度水平的合成种群,但效率更高。此外,我们还表明,当初始数据稀缺或有偏差时,自适应生成器通过自适应丰富总体样本来提高数据集质量特别有效。为了解释更新,我们引入了一种新的吉布斯重采样技术作为中间步骤,该技术使用来自最近分解的真实数据的信息来纠正错误并提高合成数据的代表性和异质性。此外,我们的研究结果表明,自适应方法对不可预见的事件具有鲁棒性,这有助于减轻在此类事件发生时真实数据缺乏代表性的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportation Research Interdisciplinary Perspectives
Transportation Research Interdisciplinary Perspectives Engineering-Automotive Engineering
CiteScore
12.90
自引率
0.00%
发文量
185
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信