3D-Printed Precision Porous Scaffolds Promote Healing In Vivo

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Guoyao Chen, Sharon Creason, Ningjing Chen, Adia Kirkham, Le Zhen, Shijie Zhang, Kan Wu, Buddy Ratner
{"title":"3D-Printed Precision Porous Scaffolds Promote Healing In Vivo","authors":"Guoyao Chen,&nbsp;Sharon Creason,&nbsp;Ningjing Chen,&nbsp;Adia Kirkham,&nbsp;Le Zhen,&nbsp;Shijie Zhang,&nbsp;Kan Wu,&nbsp;Buddy Ratner","doi":"10.1002/jbm.a.37981","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Precision porous scaffolds hold promise for tissue engineering and regenerative medicine due to their ability to support cell ingrowth and vascularization and mitigate the foreign body reaction (FBR). In previous work, we demonstrated that vat photopolymerization 3D printing enables the fabrication of porous scaffolds with 40 μm interconnected cubical pores. This study aims to do a preliminary evaluation of cellular responses and the FBR to 3D-printed scaffolds with 40 μm cubical pores, in comparison with template-fabricated spherical pores (optimized for healing) and non-porous slabs (negative control). The results indicate that porous scaffolds, regardless of pore geometry, outperform non-porous structures in mitigating the FBR, promoting tissue regeneration, and triggering vascularization. This is the first paper demonstrating the pro-healing property of high-resolution 3D-printed 40 μm cubical pore scaffolds. These findings underscore the potential of 3D-printed porous scaffolds to advance patient-specific therapies, support soft (such as brain and blood vessel) and hard tissue (such as bone) repair, and improve healing outcomes in regenerative medicine applications.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37981","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Precision porous scaffolds hold promise for tissue engineering and regenerative medicine due to their ability to support cell ingrowth and vascularization and mitigate the foreign body reaction (FBR). In previous work, we demonstrated that vat photopolymerization 3D printing enables the fabrication of porous scaffolds with 40 μm interconnected cubical pores. This study aims to do a preliminary evaluation of cellular responses and the FBR to 3D-printed scaffolds with 40 μm cubical pores, in comparison with template-fabricated spherical pores (optimized for healing) and non-porous slabs (negative control). The results indicate that porous scaffolds, regardless of pore geometry, outperform non-porous structures in mitigating the FBR, promoting tissue regeneration, and triggering vascularization. This is the first paper demonstrating the pro-healing property of high-resolution 3D-printed 40 μm cubical pore scaffolds. These findings underscore the potential of 3D-printed porous scaffolds to advance patient-specific therapies, support soft (such as brain and blood vessel) and hard tissue (such as bone) repair, and improve healing outcomes in regenerative medicine applications.

3d打印精密多孔支架促进体内愈合
精密多孔支架由于其支持细胞向内生长和血管形成以及减轻异物反应(FBR)的能力,在组织工程和再生医学中具有前景。在之前的工作中,我们证明了还原光聚合3D打印可以制造具有40 μm相互连接的立方孔的多孔支架。本研究旨在初步评估具有40 μm立方孔的3d打印支架的细胞反应和FBR,并与模板制造的球形孔(优化的愈合)和无孔板(阴性对照)进行比较。结果表明,无论孔隙几何形状如何,多孔支架在减轻FBR、促进组织再生和触发血管化方面都优于非多孔结构。这是第一篇展示高分辨率3d打印40 μm立方孔支架促愈合特性的论文。这些发现强调了3d打印多孔支架在推进患者特异性治疗、支持软组织(如大脑和血管)和硬组织(如骨骼)修复以及改善再生医学应用中的愈合效果方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信