{"title":"AMMI and GGE Biplot Analysis for Selection of Some High Yielding Terminal Heat Stress Tolerant Wheat (Triticum aestivum) Genotypes in Bangladesh","authors":"Nur Un Nesa, Anannya Das, G. H. M. Sagor","doi":"10.1007/s40003-024-00791-x","DOIUrl":null,"url":null,"abstract":"<div><p>For the development of sustainable agriculture and prosperity, it is important to breed new wheat genotypes that can produce stable yields even under increasingly adverse environmental conditions. In this study, the interactions between genotype and environment (G × E) on yield stability of thirty-five wheat genotypes under different conditions were investigated in a randomized complete block design with three replicates each. Analysis of variance revealed significant differences (<i>p</i> < 0.01) among genotypes, environments and their interactions, suggesting a high degree of variability in performance under these test conditions. A two-dimensional GGE biplot was used to illustrate how the different genotypes performed in the different environments responsible for 96.15 and 3.24% difference in GEI for yield per plant. Stable and high yielding genotypes such as G4, G10, G34 and G35 were also identified. The application of the AMMI model for the analysis of genotype-by-environment data showed that G34 performed best in several variables. The most promising genotypes with high average yield with high stability under terminal heat stress conditions are, in rank order, G34, G33, G32 and G31. The application of the AMMI model for the analysis of genotype-by-environment data showed that G34 performed best in several variables. The most promising genotypes with high average yield with high stability under terminal heat stress conditions were, in rank order, G34, G33, G32 and G31. Based on the AEC line, G33 and G31 were more stable, while G1 and G29 were less stable. The complex relationships between the genotypes and the environmental conditions were efficiently visualized by GGE and AMMI biplots, allowing a classification of the genotypes into three categories. The evaluation procedure was simplified by this graph which helped to clarify how well a genotype adapts and is commercially cultivated in various adverse environmental conditions.</p></div>","PeriodicalId":7553,"journal":{"name":"Agricultural Research","volume":"14 3","pages":"436 - 451"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40003-024-00791-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
For the development of sustainable agriculture and prosperity, it is important to breed new wheat genotypes that can produce stable yields even under increasingly adverse environmental conditions. In this study, the interactions between genotype and environment (G × E) on yield stability of thirty-five wheat genotypes under different conditions were investigated in a randomized complete block design with three replicates each. Analysis of variance revealed significant differences (p < 0.01) among genotypes, environments and their interactions, suggesting a high degree of variability in performance under these test conditions. A two-dimensional GGE biplot was used to illustrate how the different genotypes performed in the different environments responsible for 96.15 and 3.24% difference in GEI for yield per plant. Stable and high yielding genotypes such as G4, G10, G34 and G35 were also identified. The application of the AMMI model for the analysis of genotype-by-environment data showed that G34 performed best in several variables. The most promising genotypes with high average yield with high stability under terminal heat stress conditions are, in rank order, G34, G33, G32 and G31. The application of the AMMI model for the analysis of genotype-by-environment data showed that G34 performed best in several variables. The most promising genotypes with high average yield with high stability under terminal heat stress conditions were, in rank order, G34, G33, G32 and G31. Based on the AEC line, G33 and G31 were more stable, while G1 and G29 were less stable. The complex relationships between the genotypes and the environmental conditions were efficiently visualized by GGE and AMMI biplots, allowing a classification of the genotypes into three categories. The evaluation procedure was simplified by this graph which helped to clarify how well a genotype adapts and is commercially cultivated in various adverse environmental conditions.
期刊介绍:
The main objective of this initiative is to promote agricultural research and development. The journal will publish high quality original research papers and critical reviews on emerging fields and concepts for providing future directions. The publications will include both applied and basic research covering the following disciplines of agricultural sciences: Genetic resources, genetics and breeding, biotechnology, physiology, biochemistry, management of biotic and abiotic stresses, and nutrition of field crops, horticultural crops, livestock and fishes; agricultural meteorology, environmental sciences, forestry and agro forestry, agronomy, soils and soil management, microbiology, water management, agricultural engineering and technology, agricultural policy, agricultural economics, food nutrition, agricultural statistics, and extension research; impact of climate change and the emerging technologies on agriculture, and the role of agricultural research and innovation for development.