{"title":"Steerable Subarrays for Practical mmWave Massive MIMO: Algorithm Design and System-Level Analysis","authors":"Noud B. Kanters;Andrés Alayón Glazunov","doi":"10.1109/OJVT.2025.3597730","DOIUrl":null,"url":null,"abstract":"This paper investigates the application of recently proposed practical subarray (SA)-based hybrid beamforming (HBF) architectures—implemented entirely with passive beamforming networks and switches—for millimeter wave (mmWave) multi-user (MU)-MIMO base stations. Building on this practical hardware platform, we propose a joint SA configuration and signal processing framework that exploits the natural non-uniformity of user locations in 3-D space via elevation domain subsectorization. Specifically, we adapt established channel estimation and HBF techniques to the constraints of switch-based SAs, and introduce a novel 2-stage channel estimator that leverages the unique properties of mmWave channels. System-level simulations in realistic line-of-sight (LoS) and non-line-of-sight (NLoS) propagation scenarios demonstrate that the proposed solution delivers strong performance with low complexity, providing a viable path toward practical, scalable mmWave MU-MIMO deployments. In LoS scenarios, using directions-of-arrival-based channel estimation, the proposed framework achieves up to 92.6% of the average spectral efficiency (SE) of a full-digital array antenna with the same number of elements but 4 times more radio frequency chains. In NLoS environments, using the novel 2-stage estimator, this increases up to 99.7%.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"2224-2235"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11122600","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11122600/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the application of recently proposed practical subarray (SA)-based hybrid beamforming (HBF) architectures—implemented entirely with passive beamforming networks and switches—for millimeter wave (mmWave) multi-user (MU)-MIMO base stations. Building on this practical hardware platform, we propose a joint SA configuration and signal processing framework that exploits the natural non-uniformity of user locations in 3-D space via elevation domain subsectorization. Specifically, we adapt established channel estimation and HBF techniques to the constraints of switch-based SAs, and introduce a novel 2-stage channel estimator that leverages the unique properties of mmWave channels. System-level simulations in realistic line-of-sight (LoS) and non-line-of-sight (NLoS) propagation scenarios demonstrate that the proposed solution delivers strong performance with low complexity, providing a viable path toward practical, scalable mmWave MU-MIMO deployments. In LoS scenarios, using directions-of-arrival-based channel estimation, the proposed framework achieves up to 92.6% of the average spectral efficiency (SE) of a full-digital array antenna with the same number of elements but 4 times more radio frequency chains. In NLoS environments, using the novel 2-stage estimator, this increases up to 99.7%.